

INFORME DE RESULTADOS DEL MONITOREO AMBIENTAL PARTICIPATIVO DE CALIDAD AMBIENTAL, BIOLOGÍA E HIDROBIOLOGÍA CAMPAÑA 8 – TEMPORADA SECA - 2020 DEL PROYECTO MINERO QUELLAVECO

RESUMEN EJECUTIVO

LinkedIn

(051) 396 3771

www.asilorza.com

Av. Parque de las Leyendas 210, Oficina 501, San Miguel.

1. ÍNDICE

1.	INTRODUCCIÓN	3
1.1	ANTECEDENTES	3
2.	MONITOREO DE CALIDAD AMBIENTAL	4
2.1	METODOLOGÍA DEL MONITOREO DE CALIDAD AMBIENTAL	4
2.1.1	CALIDAD DE AIRE	4
2.1.2	CALIDAD DE RUIDO Y VIBRACIONES	
2.1.3	VIBRACIONES	5
2.1.4	CALIDAD DE SUELO	6
2.1.5	CALIDAD DE AGUA SUPERFICIAL	7
2.1.6	SEDIMENTOS	8
2.2	RESULTADOS DEL MONITOREO DE CALIDAD AMBIENTAL	9
2.2.1	CALIDAD DE AIRE	9
2.2.2	CALIDAD DE RUIDO	12
2.2.3	VIBRACIONES	15
2.2.4	CALIDAD DE SUELO	
2.2.5	CALIDAD DE AGUA SUPERFICIAL	20
2.2.6	CALIDAD DE SEDIMENTOS	32
2.3	CONCLUSIONES	
3.	MONITOREO BIOLÓGICO E HIDROBIOLÓGICO	40
3.1	METODOLOGÍA DEL MONITOREO BIOLÓGICO	40
3.1.1	METODOLOGÍA DEL RECOJO DE INFORMACIÓN PARA FLORA	40
3.1.2	METODOLOGÍA DEL RECOJO DE INFORMACIÓN PARA FAUNA SILVESTRE	41
3.1.3	METODOLOGÍA DEL RECOJO DE INFORMACIÓN DEL COMPONENTE HIDROBIOLÓGICO	42
3.2	PRINCIPALES RESULTADOS DEL MONITOREO BIOLÓGICO E HIDROBIOLÓGICO	43
3.2.1	COMPONENTE FLORA Y VEGETACIÓN	43
3.2.2	COMPONENTE FAUNA SILVESTRE	43
3.2.3	COMPONENTE HIDROBIOLÓGICO	45
3.3	CONCLUSIONES	47

2. INTRODUCCIÓN

El presente Resumen Ejecutivo del Monitoreo Ambiental Participativo (en adelante MAP) contiene el resumen de los resultados de las evaluaciones de calidad de aire, ruido y vibraciones, agua superficial (incluye resultados en ríos, quebradas y agua de mar), suelo y sedimentos en cuerpos de agua, distribuidos en las zonas de operación minera y abastecimiento de agua del Proyecto Minero Quellaveco, así como los resultados de las evaluaciones de biología en las disciplinas de botánica, ornitología, mastozoología, herpetología e hidrobiología, correspondiente a la Campaña N°8 en la temporada seca (entre los meses de junio y octubre) del año 2020.

2.1 ANTECEDENTES

El Proyecto Minero Quellaveco es el proyecto de explotación del yacimiento de cobre más grande de Sudamérica y a nivel mundial, el titular responsable es ANGLO AMERICAN (en adelante AAQ), encontrándose localizado en el distrito de Torata, perteneciente a la provincia de Mariscal Nieto, en la región de Moquegua, aproximadamente a unos 40 km de la ciudad de Moquegua.

Este proyecto cuenta con la aprobación de un Estudio de Impacto Ambiental (EIA), otorgado por el Ministerio de Energía y Minas a través de la Resolución Directoral N°266-2000-EM/DGAA, con fecha del 19 de diciembre del año 2000. Asimismo, posterior a la fecha de la aprobación, se han desarrollado hasta cuatro (04) modificatorias en torno a los componentes del proyecto, siendo la última la aprobación de la Resolución Directoral N°399-2015-MEM/AAM.

Para el año 2013 se establece el Programa de Monitoreo Ambiental Participativo Quellaveco, estando relacionado bajo los compromisos N°5, 7 y 10 asumidos por el titular AAQ en la Mesa de Diálogo con diversas autoridades y actores locales de la región de Moquegua. Por lo que, con fecha del 12 de junio del año 2013 se da la conformación del Subcomité de Monitoreo Ambiental Participativo del Proyecto Minero Quellaveco, con las funciones de elaborar, supervisar y presentar los resultados obtenidos en el MAP Quellaveco.

3. MONITOREO DE CALIDAD AMBIENTAL

El desarrollo del Monitoreo de Calidad Ambiental se llevó a cabo entre los días 09 y 29 de octubre del año 2020, donde se realizó la medición de nueve (09) puntos de calidad de aire, doce (12) puntos de calidad de ruido y vibraciones, 19 puntos de calidad de suelo, 38 puntos de calidad de agua y sedimentos, los cuales fueron realizados por la empresa **ASILORZA S.A.C.** "Consultoría y **Proyectos Ambientales**" (en adelante ASILORZA), en su calidad de Asesor Técnico del Monitoreo Ambiental Participativo – Proyecto Quellaveco dentro del marco del <u>Contrato N°001-2020-FDM</u>, asegurando la calidad del servicio realizado, la verificación de los resultados obtenidos y la explicación de estos aspectos técnicos, con la finalidad de atender la preocupación de la población de la región de Moquegua.

3.1 METODOLOGÍA DEL MONITOREO DE CALIDAD AMBIENTAL

3.1.1 CALIDAD DE AIRE

La evaluación de calidad de aire tiene como objetivo realizar el seguimiento de la calidad de los parámetros atmosféricos presentes en el área de influencia del proyecto verificando el cumpliendo de los ECA para aire aprobados mediante D.S. N°003-2017-MINAM, por lo que, para dicho fin se realizó el monitoreo de calidad de aire de acuerdo con los lineamientos y procedimientos descritos en el Protocolo Nacional de Monitoreo de la Calidad Ambiental de Aire publicado por el Ministerio del Ambiente (2019).

En el siguiente cuadro se presentan los parámetros que se evaluaron como parte del desarrollo del monitoreo de calidad de aire. Asimismo, en la columna de la derecha se observa el valor de comparación establecido en los Estándares Nacionales de Calidad Ambiental de Aire y que servirá como indicador para el seguimiento de la calidad de aire.

Cuadro 4. Parámetros de Medición – Calidad de Aire

Ítem	Parámetro	Unidad de medición	Simbología	ECA (μg/m3)
01	Material particulado menor a 10 micras	μg/m³	PM-10	100
02	Material particulado menor a 2,5 micras	μg/m³	PM-2,5	50
03	Dióxido de nitrógeno	μg/m³	NO ₂	200
04	Dióxido de azufre	μg/m³	SO ₂	250
05	Monóxido de carbono	μg/m³	СО	10 000

Ítem	Parámetro	Unidad de medición	Simbología	ECA (μg/m3)
06	Variables meteorológicas: - Temperatura - Precipitación - Humedad relativa - Dirección del viento - Velocidad del viento	-	-	-

Elaboración: ASILORZA, 2021.

Para la medición de material particulado (PM-10 y PM-2,5) se utilizó un equipo muestreador de partículas de bajo volumen ("Low vol"), mientras que para la medición de los gases de monóxido de carbono (CO), dióxido de azufre (SO_2) y dióxido de nitrógeno (NO_2) se ha empleado un tren de muestreo de gases.

Asimismo, el monitoreo de calidad de aire estuvo acompañado de la medición de parámetros meteorológicos como temperatura, precipitación, humedad relativa, velocidad y dirección del viento mediante el empleo de una estación meteorológica portátil durante el periodo de 24 horas de medición.

3.1.2 CALIDAD DE RUIDO Y VIBRACIONES

Las mediciones de los niveles de ruido se han llevado a cabo mediante la utilización de un medidor de ruido denominado sonómetro, el cual cumple con las características de tipo 1 y se debidamente calibrado ante INACAL, de acuerdo con lo dispuesto en el D.S. N° 085-2003-PCM que aprueba los ECA para Ruido, cuyos valores se presentan en el siguiente cuadro.

Cuadro 5. Estándares Nacionales de Calidad Ambiental para Ruido

	ECA Ruido, Valores Expresados en L _{AeqT} ⁽¹⁾						
Zonas de Aplicación	Ruido Diurno (De 07:01 hrs a 22:00 hrs)	Ruido Nocturno (De 22:01 hrs a 07:00 hrs)					
Zona de Protección Especial	50	40					
Zona Residencial	60	50					
Zona comercial	70	60					
Zona Industrial	80	70					

(1): Ruido Equivalente.

Fuente: D.S. N°085-2003-PCM. **Elaboración:** ASILORZA, 2021.

3.1.3 VIBRACIONES

Actualmente, no existe una legislación peruana para la evaluación de vibraciones, por lo que, se ha tomado en cuenta lo descrito en la Norma NTP-ISO 2631-1 para la medición de vibraciones, cuyo registro de datos se realizó con la ayuda de un vibrómetro debidamente acreditado.

Cuadro 6. Criterios para la Evaluación de la Exposición de Vibraciones (ISO 2631-1:2016)

Evaluación de los efectos debido a la exposición a vibraciones	Valores de Aw (Según ISO 2631-1:1997)	Efecto producido
	Aw < 0,315 m/s ²	No molesto
	$0.315 \text{ m/s}^2 < \text{Aw} < 0.63 \text{ m/s}^2$	Ligeramente molesto
Confort	$0.5 \text{ m/s}^2 < \text{Aw} < 1 \text{ m/s}^2$	Bastante molesto
(0,5 a 80 Hz)	$0.8 \text{ m/s}^2 < \text{Aw} < 1.6 \text{ m/s}^2$	Molesto
	1,25 m/s ² < Aw < 2,5 m/s ²	Muy molesto
	Aw > 2,5 m/s ²	Extremadamente molesto
Percepción (0,5 a 80 Hz)	(0,01 – 0,02) m/s ²	Percepción

Fuente: Adaptado del ISO 2631-1:2016 (Rev. 2016) "Guía para la estimación de la exposición de los individuos a vibraciones globales del cuerpo, Parte 1: Requerimientos generales", 2016.

Elaboración: ASILORZA, 2021.

3.1.4 CALIDAD DE SUELO

El monitoreo de calidad de suelo fue llevado a cabo según lo descrito en la Guía para el Muestreo de Suelos publicado por el Ministerio del Ambiente – MINAM mediante Resolución Ministerial N°085-2014-MINAM y, en concordancia con los Estándares Nacionales de Calidad Ambiental para Suelo aprobados mediante D.S. N°011-2017-MINAM.

Esta toma de muestras de suelos se realizó mediante el empleo de herramientas para excavación como palas y picos hasta tener una profundidad de 30 cm (aplicado para el muestreo de identificación), con la finalidad de verificar la existencia o no de contaminantes en los puntos de suelo.

Cuadro 7. Estándares Nacionales de Calidad Ambiental para Suelo

			Usos de Suelo				
N°	Parámetros	Unidad	Suelo Agrícola	Suelo Residencial / Parques	Suelo Comercial / Industrial / Extractivo		
ORGÁ	NICOS						
Hidro	carburos aromáticos volátiles						
1	Benceno	mg/kg PS (1)	0.03	0.03	0.03		
2	Tolueno	mg/kg PS (1)	0.37	0.37	0.37		
3	Etilbenceno	mg/kg PS (1)	0.082	0.082	0.082		
4	Xileno	mg/kg PS (1)	11	11	11		
Hidro	carburos poliaromáticos						
5	Naftaleno	mg/kg PS (1)	0.1	0.6	22		
6	Benzo(a) pireno	mg/kg PS (1)	0.1	0.7	0.7		
Hidro	carburos de Petróleo						
7	Fracción de hidrocarburos F1 (C6 - C10)	mg/kg PS (1)	200	200	500		
8	Fracción de hidrocarburos F2 (>C10 - C28)	mg/kg PS (1)	1200	1200	5000		
9	Fracción de hidrocarburos F3 (>C28 - C40)	mg/kg PS (1)	3000	3000	6000		
Comp	uestos Organoclorados						
10	Bifenilos policlorados - PCB	mg/kg PS (1)	0.5	1.3	33		
INORG	GÁNICOS						
11	Arsénico	mg/kg PS (1)	50	50	140		
12	Bario total	mg/kg PS (1)	750	500	2000		

			Usos de Suelo				
N°	Parámetros	Unidad	Suelo Agrícola	Suelo Residencial / Parques	Suelo Comercial / Industrial / Extractivo		
13	Cadmio	mg/kg PS (1)	1.4	10	22		
14	Cromo total	mg/kg PS (1)	**	400	1000		
15	Cromo VI	mg/kg PS (1)	0.4	0.4	1.4		
16	Mercurio	mg/kg PS (1)	6.6	6.6	24		
17	Plomo	mg/kg PS (1)	70	140	800		
18	Cianuro libre	mg/kg PS (1)	0.9	0.9	8		

(**): No aplica para esa categoría.

Nota 1: Concentración de metales totales

Fuente: D.S. 011-2017-MINAM. **Elaboración**: ASILORZA, 2021.

3.1.5 CALIDAD DE AGUA SUPERFICIAL

La toma de muestras, así como el transporte y análisis de muestras de calidad de agua ha sido llevado a cabo según lo indicado en el Protocolo Nacional para el Monitoreo de la Calidad de los Recursos Hídricos publicado por la Autoridad Nacional del Agua — ANA mediante Resolución Jefatural N° 010-2016-ANA.

Asimismo, para la medición del caudal se ha utilizado un correntómetro que registra las velocidades en distintos sectores de los ríos y/o quebradas permitiendo la determinación de los caudales, así como el empleo de un multiparámetro para la medición de parámetros in situ tales como temperatura, pH, conductividad eléctrica y oxígeno disuelto.

Los resultados obtenidos han sido comparados con los Estándares Nacionales de Calidad Ambiental para Agua aprobados por el Ministerio del Ambiente – MINAM mediante D.S. N° 004-2017-MINAM.

En el siguiente cuadro se detallan los parámetros que se encuentran contemplados bajo los ECA para Agua (D.S. N°004-2017-MINAM), asimismo, se debe mencionar que, la categoría asignada por la Autoridad Nacional del Agua – ANA para los ríos y/o quebradas evaluadas durante el MAP Campaña N°8 ha sido la Categoría 3: Riego de vegetales y bebida de animales.

Cuadro 8. Estándares Nacionales de Calidad Ambiental para Agua Superficial

Ítem	Parámetro	Unidad de medición	Simbología	Ítem	Parámetro	Unidad de medición	Simbología
1	Aceites y grasas	mg/L	AyG	32	Arsénico	mg/L	As
2	Caudal	m³/s	1	33	Bario	mg/L	Ва
3	Cianuro total	mg/L	-	34	Berilio	mg/L	Ве
4	Cianuro WAD	mg/L	-	35	Bismuto	mg/L	Bi
5	Coliformes Termotolerantes	NMP/100ml	-	36	Boro	mg/L	В
6	Coliformes Totales	NMP/100ml	-	37	Cadmio	mg/L	Cd
7	Color	UC	-	38	Calcio	mg/L	Ca

Ítem	Parámetro	Unidad de medición	Simbología	Ítem	Parámetro	Unidad de medición	Simbología
8	Conductividad	μS/cm	-	39	Cerio	mg/L	Ce
9	Cromo Hexavalente	mg/L	Cr VI	40	Cobalto	mg/L	Со
10	Demanda bioquímica de oxígeno	mg/L	DBO₅	41	Cobre	mg/L	Cu
11	Demanda química de oxígeno	mg/L	DQO	42	Cromo	mg/L	Cr
12	SAAM	mg/L	-	43	Estaño	mg/L	Sn
13	Dureza total	mg/L	-	44	Estroncio	mg/L	Sr
14	Enterococos fecales o Enterococos Intestinales	NMP/100ml	-	45	Fósforo	mg/L	Р
15	Escherichia coli	NMP/100ml	-	46	Hierro	mg/L	Fe
16	Huevos de helmintos	Huevo/l	-	47	Litio	mg/L	Li
17	Larvas (nematodos)	Larvas/l	-	48	Magnesio	mg/L	Mg
18	Oxígeno disuelto	mg/L	O.D.	49	Manganeso	mg/L	Mn
19	Potencial de hidrógeno	Unidad de pH	рН	50	Molibdeno	mg/L	Mb
20	Potencial redox	mV	-	51	Níquel	mg/L	Ni
21	Sólidos suspendidos totales	mg/L	SST	52	Plata	mg/L	Ag
22	Sólidos totales disueltos	mg/L	STD	53	Plomo	mg/L	Pb
23	Temperatura	°C	Т	54	Potasio	mg/L	K
24	Turbidez	NTU	-	55	Selenio	mg/L	Se
25	Bifenilos Policlorados	mg/L	РСВ	56	Silice	mg/L	Si
26	Nitrato	mg/L	-	57	Sodio	mg/L	Na
27	Nitrito	mg/L	-	58	Talio	mg/L	Ta
28	Fosfatos	mg/L	-	59	Titanio	mg/L	Ti
29	Sulfato	mg/L	-	60	Uranio	mg/L	U
30	Aluminio	mg/L	Al	61	Vanadio	mg/L	V
31	Antimonio	mg/L	Sb	62	Zinc	mg/L	Zn

Elaboración: ASILORZA, 2021.

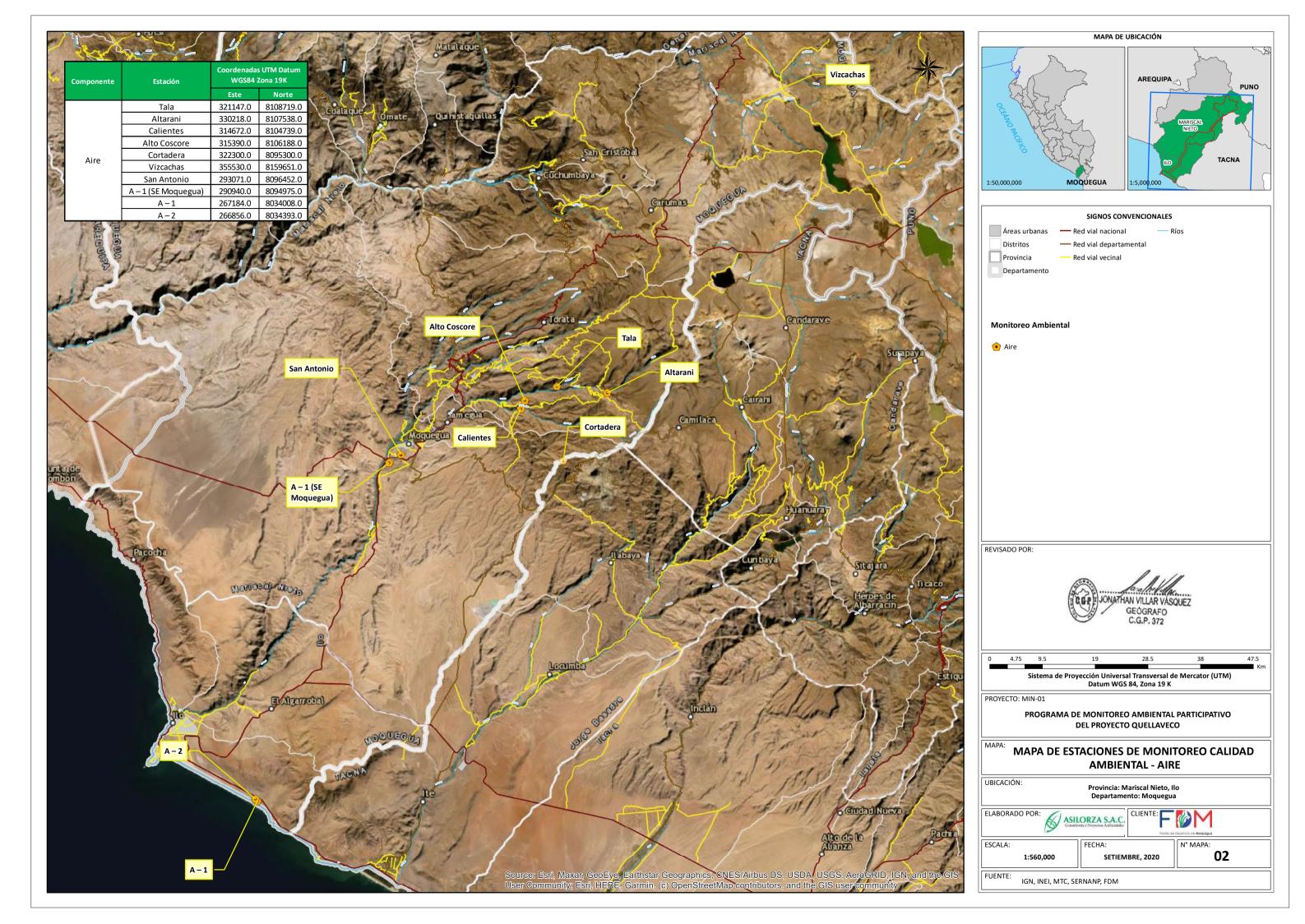
3.1.6 SEDIMENTOS

Debido que no contamos a nivel nacional con un protocolo para la medición de sedimentos, tanto para la toma de sedimentos en ríos y/o quebradas como la toma de sedimentos en el fondo marino, se ha tomado en cuenta el protocolo metodológico del laboratorio ANALYTICAL LABORATORY E.I.R.L. (validado por IAS), el cual consiste el recojo de muestras de sedimentos mediante el empleo de palas en el fondo del cauce de ríos y/o quebradas, discriminando piedras o cualquier material que pueda interferir en el análisis de metales y TPH. Mientras que, para el recojo de sedimentos en el fondo marino, se realizó mediante el empleo de una draga, la cual se lanzaba desde la altura de la embarcación y al hacer contacto con el fondo marino se cerraba automáticamente recogiendo la muestra de sedimento.

Cuadro 9. Parámetros de Medición – Sedimentos

Ítem	Parámetro	Unidad de medición
1	Material extraíble por n-Hexano	mg/kg MS
2	Fosfatos	mg/kg MS
3	Nitrato	mg/kg MS
4	Mercurio	mg/kg MS
5	Aluminio	mg/kg MS
6	Antimonio	mg/kg MS
7	Arsénico	mg/kg MS
8	Bario	mg/kg MS
9	Berilio	mg/kg MS
10	Bismuto	mg/kg MS
11	Boro	mg/kg MS
12	Cadmio	mg/kg MS
13	Calcio	mg/kg MS

Elaboración: ASILORZA, 2021.


3.2 RESULTADOS DEL MONITOREO DE CALIDAD AMBIENTAL

3.2.1 CALIDAD DE AIRE

El monitoreo de calidad de aire se ha llevado a cabo en nueve puntos de monitoreo, distribuidos entre la Zona de Operaciones, Moquegua e llo (terreno frente a ENERSUR), entre el periodo del 09 hasta el 29 de octubre del 2020.

Cuadro 10. Ubicación de Puntos de Calidad de Aire – MAP Campaña N°8

Puntos de	Commonanta	Coordena	Cumplimiento ECA			
Monitoreo	Componente	Este	Norte	Zona	Sí	No
Tala	Aire	321,075.00	8,008,708.00	195	Х	
Altarani	Aire	330,218.00	8,107,538.00	195	Х	
Calientes	Aire	314,672.00	8,104,739.00	195	Х	
Alto Coscore	Aire	315,390.00	8,106,188.00	195	Х	
Cortadera	Aire	322,300.00	8,095,300.00	195	Х	
Vizcachas (*)	Aire	355,530.00	8,159,651.00	195	Х	
San Antonio	Aire	293,027.00	8,096,480.00	195	Х	
A – 1 (SE Moquegua)	Aire	290,940.00	8,094,975.00	195	Х	
A – 1	Aire	267,184.00	8,034,008.00	198	Х	
A – 2	Aire	266,856.00	8,034,393.00	198	Х	

A continuación, en el siguiente cuadro se detalla los resultados de los puntos de monitoreo de calidad de aire analizados:

Cuadro 11. Resultados de Calidad de Aire

		Periodo de medición			Resultados de Medición					
Punto de Monitoreo	Descripción	Inicio		Fin		PM-10	PM-2,5	со	NO ₂	SO₂
Monitoreo		Fecha	Hora	Fecha	Hora	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³
	1° medición	9/10/2020	15:30	10/10/2020	15:30	29,29	22,37	<1 250	<104,17	<13,0
Ca-Altarani	2° medición	10/10/2020	15:40	12/10/2020	15:40	25,72	21,57	-	-	-
	3° medición	12/10/2020	15:50	10/10/2020	15:50	22,14	12,79	-	-	-
	1° medición	10/10/2020	11:40	12/10/2020	11:40	22,58	17,54	<1 250	<104,17	<13,0
Ca-Tala	2° medición	12/10/2020	09:25	13/10/2020	09:25	20,11	5,49	-	-	-
	3° medición	13/10/2020	09:35	15/10/2020	09:35	13,07	6,55	-	-	-
	1° medición	15/10/2020	09:25	16/10/2020	09:25	9,50	5,90	-	-	-
Ca-Alto Coscore	2° medición	16/10/2020	09:25	17/10/2020	09:25	14,15	7,59	-	-	-
Coscore	3° medición	17/10/2020	09:35	15/10/2020	09:35	22,19	7,40	<1 250	<104,17	<13,0
	1° medición	15/10/2020	14:25	16/10/2020	14:25	16,98	8,99	-	-	-
Ca-Calientes	2° medición	16/10/2020	14:30	17/10/2020	14:30	21,01	<5,00	-	-	-
	3° medición	17/10/2020	13:40	20/10/2020	13:40	19,63	<5,00	<1 250	<104,17	<13,0
	1° medición	20/10/2020	07:20	21/10/2020	07:20	24,96	14,58	-	-	-
Ca- Cortadera	2° medición	21/10/2020	07:50	22/10/2020	07:50	12,76	9,92	<1 250	<104,17	<13,0
Cortadera	3° medición	22/10/2020	08:10	19/10/2020	08:10	13,32	7,62	-	-	-
	1° medición	19/10/2020	12:30	20/10/2020	12:30	21,86	19,22	-	-	-
Ca-San Antonio	2° medición	20/10/2020	12:50	21/10/2020	12:50	14,85	11,04	-	-	-
Antonio	3° medición	21/10/2020	12:50	22/10/2020	12:50	18,04	10,18	<1 250	<104,17	<13,0
	1° medición	22/10/2020	15:50	23/10/2020	15:50	19,22	12,15	<1 250	<104,17	<13,0
Ca-A-1 (SE Moquegua)	2° medición	23/10/2020	16:00	24/10/2020	16:00	4,68	<5,00	-	-	-
oquegua,	3° medición	24/10/2020	16:10	26/10/2020	16:10	<0,701	<5,00	-	-	-
	1° medición	26/10/2020	13:10	27/10/2020	13:10	4,35	<5,00	-	-	-
Ca-A-1 (Ilo)	2° medición	27/10/2020	12:00	28/10/2020	11:10	3,53	<5,00	-	-	-
()	3° medición	28/10/2020	11:20	26/10/2020	10:35	4,37	<5,00	<1 250	<104,17	<13,0
	1° medición	26/10/2020	12:40	27/10/2020	12:50	2,99	<5,00	-	-	-
Ca-A-2 (Ilo)	2° medición	27/10/2020	12:30	28/10/2020	11:40	3,95	<5,00	-	-	-
()	3° medición	28/10/2020	11:50	29/10/2020	14:05	3,51	<5,00	<1 250	<104,17	<13,0
		ECA PARA AIRE	(1)			100	50	10 000	200	250

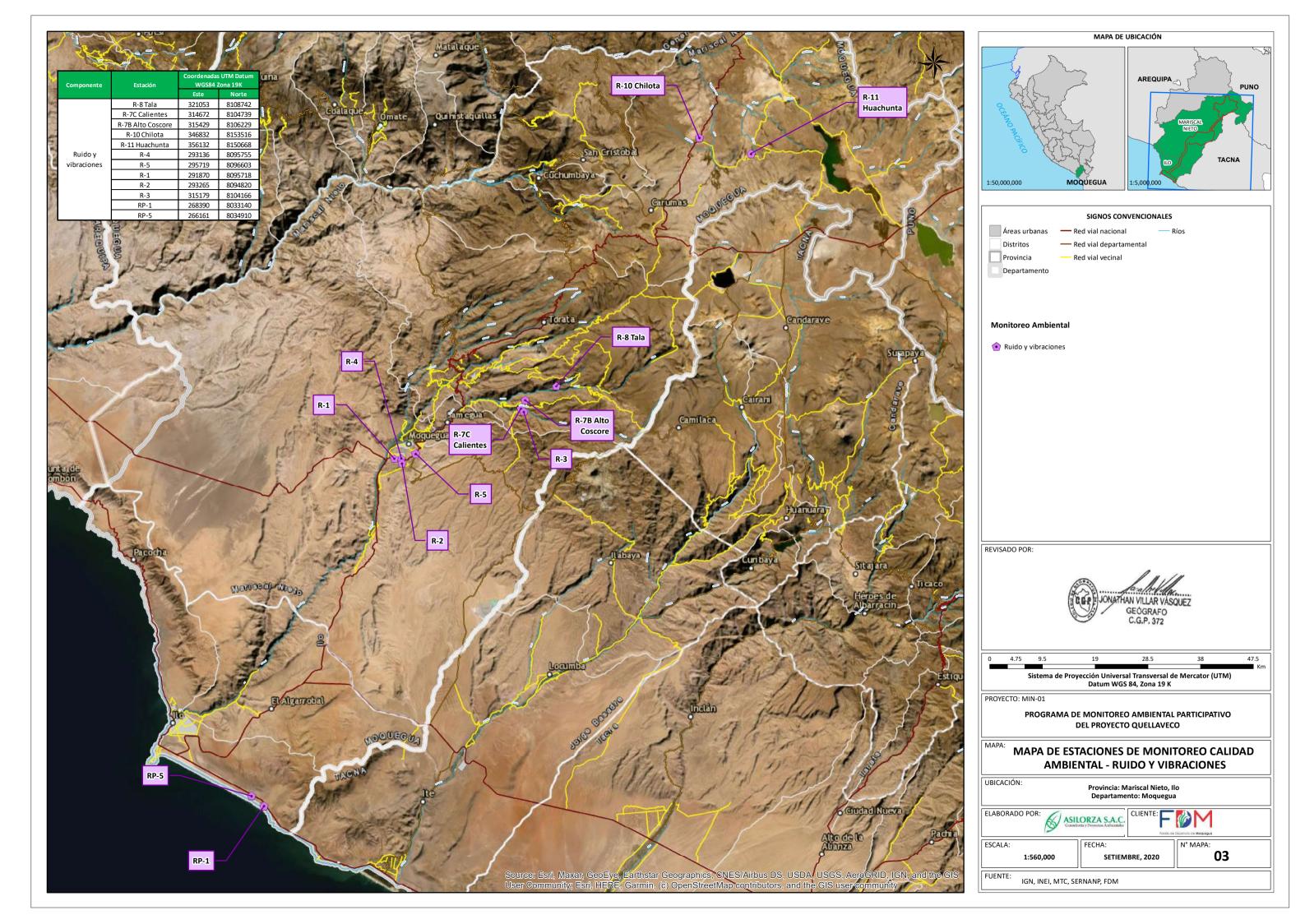
^{(1):} Decreto Supremo N°003-2017-MINAM.

Fuente: Informes de Ensayo IE-20-5729, IE-20-5959, IE-20-6169, IE-20-6308, ANALYTICAL LABORATORY E.I.R.L., 2020. **Elaboración:** ASILORZA, 2021.

[&]quot;<": Por debajo del Límite de Detección del Método del Laboratorio.

3.2.2 CALIDAD DE RUIDO

El Monitoreo de Calidad de Ruido correspondiente al MAP Campaña N°8 – Temporada Seca se ha llevado a cabo desde el día 12 al 29 de octubre del 2020, realizándose bajo los lineamientos establecidos en los Estándares Nacionales de Calidad Ambiental para Ruido aprobados mediante D.S. N° 085-2003-PCM.


Cuadro 12. Ubicación de Puntos de Calidad de Ruido y Vibraciones – MAP Campaña N°8

Puntos de	Zonificación ⁽¹⁾	Coordenada	s UTM Datum W	/GS84	ECA Cum	plimiento
Monitoreo	ZOTITICACION (=)	Este	Norte	Zona	Sí cumple	No cumple
R-8 Tala (*)	Zona residencial	321,053.00	8,108,742.00	195	Х	
R-7C Calientes	Zona residencial	314,672.00	8,104,739.00	195	Х	
R-7B Alto Coscore	Zona residencial	315,429.00	8,106,229.00	195	х	
R-10 Chilota	Zona residencial	346,832.00	8,153,516.00	195	Х	
R-11 Huachunta	Zona residencial	356,132.00	8,150,668.00	195	х	
R-4	Zona comercial	293,136.00	8,095,755.00	195	Х	
R-5	Zona comercial	295,719.00	8,096,603.00	195	Х	
R-1	Zona residencial	291,870.00	8,095,718.00	198	Х	
R-2	Zona residencial	293,265.00	8,094,820.00	195	Х	
R-3	Zona residencial	315,179.00	8,104,166.00	198	Х	
RP-1	Zona industrial	268,390.00	8,033,140.00	195	Х	
RP-5	Zona industrial	266,161.00	8,034,910.00	195	Х	

^(*) Debido a la coyuntura por COVID-19, se ha realizado solo el monitoreo en horario diurno evitando así el contacto directo con la C.C. Tala.

A continuación, en la siguiente figura se presenta la ubicación de los puntos de monitoreo de calidad de ruido:

⁽¹⁾ Zonificación de acuerdo con los Estándares Nacionales de Calidad Ambiental para Ruido aprobados por D.S. N°085-2003-PCM.

A continuación, en el siguiente cuadro se detalla los resultados de los puntos de monitoreo de calidad de ruido para horario diurno que de acuerdo con la norma va desde las 07:01 horas hasta las 22:00 horas.

Cuadro 13. Resultados de los Niveles de Ruido – Horario Diurno en Zona Residencial

Código de Punto	Descripción	Fecha de muestreo			En	edición rno oras)	ECA ⁽²⁾ Zona	
			Inicio	Fin	Lmín	Lmáx	LAeqT (1)	Residencial
R-8 (Tala)	C.C. Tala	12/10/2020	09:34	09:49	37,1	49,0	40,1	
R-7B	C.C. Alto Coscore	16/10/2020	08:40	08:55	36,2	63,7	45,5	-
R-7C	C.C. Calientes	16/10/2020	14:15	14:30	40,6	59,3	45,3	
R-3	C.C. Calientes	16/10/2020	09:50	10:05	32,0	59,2	40,7	co do
R-2	Moquegua	22/10/2020	11:40	11:55	32,3	66,8	52,9	60 dB
R-1	Moquegua	23/10/2020	12:30	12:45	36,0	51,6	40,5	
R-10 (Chilota)	C.C. Chilota	27/10/2020	17:40	17:55	34,6	78,9	46,9	
R-11 (Huachunta)	C.C. Huachunta	27/10/2020	18:50	19:05	33,5	58,4	41,6	

(1): Ruido Equivalente expresado en dB.

(2): D.S. N°085-2003-PCM.

Fuente: Informes de Ensayo IE-20-6421, ANALYTICAL LABORATORY E.I.R.L., 2020.

Elaboración: ASILORZA, 2021.

Cuadro 14. Resultados de los Niveles de Ruido – Horario Diurno en Zona Comercial

Código de Punto	Descripción	Fecha de muestreo	Hor	ario	Result En (07:0	ECA ⁽²⁾ Zona		
			Inicio	Fin	Lmín	Lmáx	LAeqT (1)	Comercial
R-4	Moquegua	22/10/2020	10:35	10:50	30,2	82,5	64,3	70 dB
R-5	Moquegua	23/10/2020	11:40	11:55	43,1	80,8	59,8	70 aB

(1): Ruido Equivalente expresado en dB.

(2): D.S. N°085-2003-PCM.

Fuente: Informes de Ensayo IE-20-6421, ANALYTICAL LABORATORY E.I.R.L., 2020.

Elaboración: ASILORZA, 2021.

Cuadro 15. Resultados de los Niveles de Ruido – Horario Diurno en Zona Industrial

Código de Punto	Descripción	Fecha de Ho muestreo				Result En (07:0	ECA ⁽²⁾ Zona	
			Inicio	Fin	Lmín	Lmáx	LAeqT (1)	Comercial
RP-5	Ilo	27/10/2020	10:40	10:55	37,6	54,0	40,2	00 4D
RP-1	Ilo	27/10/2020	11:20	11:35	35,1	50,3	42,8	80 dB

(1): Ruido Equivalente expresado en dB.

(2): D.S. N°085-2003-PCM.

Fuente: Informes de Ensayo IE-20-6421, ANALYTICAL LABORATORY E.I.R.L., 2020.

Elaboración: ASILORZA, 2021.

Asimismo, en los siguientes cuadros se detallan los resultados de los puntos de monitoreo de calidad de ruido para horario nocturno que de acuerdo con la norma va desde las 22:01 horas hasta las 07:00 horas del día siguiente.

Cuadro 16. Resultados de los Niveles de Ruido – Horario Nocturno en Zona Residencial

Código de Punto	Descripción	Fecha de muestreo	Hor	ario	En	ados de Me horario Diu 11 – 22:00 h	rno	ECA ⁽²⁾ Zona
			Inicio	Fin	Lmín	Lmáx	LAeqT (1)	Residencial
R-7B	C.C. Alto Coscore	16/10/2020	06:32	06:47	33,8	56,8	42,9	
R-7C	C.C. Calientes	16/10/2020	06:00	06:15	39,4	65,6	44,2	
R-3	C.C. Calientes	16/10/2020	05:27	05:42	31,2	58,7	40,1	
R-2	Moquegua	22/10/2020	22:40	22:55	30,7	65,6	40,1	50 dB
R-1	Moquegua	23/10/2020	22:05	22:20	34,9	51,4	39,7	
R-10 (Chilota)	C.C. Chilota	27/10/2020	22:55	23:10	35,6	72,9	45,1	
R-11 (Huachunta)	C.C. Huachunta	27/10/2020	22:02	22:17	31,8	56,4	40,1	

(1): Ruido Equivalente expresado en dB.

(2): D.S. N°085-2003-PCM.

Fuente: Informes de Ensayo IE-20-6421, ANALYTICAL LABORATORY E.I.R.L., 2020.

Elaboración: ASILORZA, 2021.

Cuadro 17. Resultados de los Niveles de Ruido – Horario Nocturno en Zona Comercial

Código de Punto	Descripción	Fecha de muestreo	Hor	ario	En	dición rno oras)	ECA ⁽²⁾ Zona	
			Inicio	Fin	Lmín	Lmáx	LAeqT (1)	Comercial
R-4	Moquegua	22/10/2020	22:10	22:25	31,9	78,5	52,9	60 dB
R-5	Moquegua	23/10/2020	22:27	22:42	40,5	75,6	54,0	60 ab

(1): Ruido Equivalente expresado en dB.

(2): D.S. N°085-2003-PCM.

Fuente: Informes de Ensayo IE-20-6421, ANALYTICAL LABORATORY E.I.R.L., 2020.

Elaboración: ASILORZA, 2021.

Cuadro 18. Resultados de los Niveles de Ruido – Horario Nocturno en Zona Industrial

Código de Punto	Descripción	Fecha de muestreo			En	ados de Me horario Diu 01 – 22:00 h	rno	ECA ⁽²⁾ Zona
			Inicio	Fin	Lmín	Lmáx	LAeqT (1)	Comercial
RP-5	Ilo	27/10/2020	06:05	06:20	40,7	50,0	39,4	70 dB
RP-1	Ilo	27/10/2020	06:40	06:55	37,6	52,7	42,3	70 aB

(1): Ruido Equivalente expresado en dB.

(2): D.S. N°085-2003-PCM.

Fuente: Informes de Ensayo IE-20-6421, ANALYTICAL LABORATORY E.I.R.L., 2020.

Elaboración: ASILORZA, 2021.

3.2.3 VIBRACIONES

Los puntos de monitoreo para vibraciones son las mismas que han sido consideradas para el monitoreo de calidad de ruido, por lo que, comparten la misma ubicación y misma descripción.

En los siguientes cuadros se presentan los resultados de las mediciones de vibraciones, estas mediciones se presentan como aceleración ponderada de la frecuencia (m/s²) y su respectiva transformación en nivel de aceleración en dB (referencia 10-6 m/s²), descritas mediante un nivel global de una frecuencia de 80 Hz.

Cuadro 19. Resultados de Vibraciones expresadas en m/s² y dB

Puntos de Monitoreo	Resultado de Aw (m/s²)	Resultado L _{a,w} expresado en dB
R-8 Tala	<0,0001	0,0
R-7C Calientes	<0,0001	0,0
R-7B Alto Coscore	<0,0001	0,0
R-10 Chilota	<0,0001	0,0
R-11 Huachunta	<0,0001	0,0
R-4	<0,0001	0,0
R-5	<0,0001	0,0
R-1	<0,0001	0,0
R-2	<0,0001	0,0
R-3	<0,0001	0,0
RP-1	<0,0001	0,0
RP-5	<0,0001	0,0

Aw: Aceleración ponderada de la frecuencia expresada en m/s².

La,w: Aceleración expresado en dB, con referencia a 10-6 m/s2

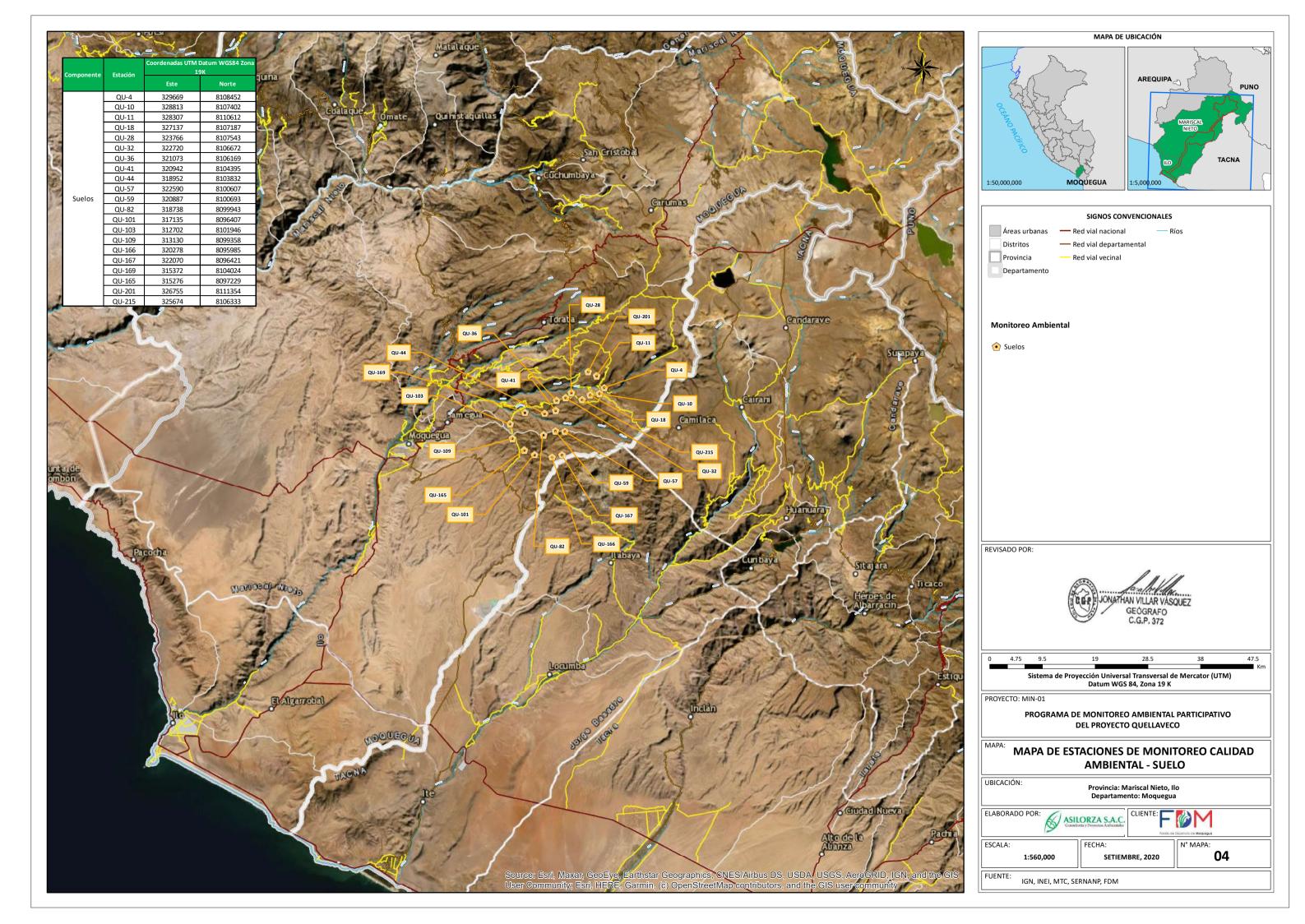
"<": Valor obtenido por debajo del límite de detección del método.

Fuente: Informes de Ensayo de Vibración.

Elaboración: ASILORZA, 2021.

Cuadro 20. Resultados de Aceleración (m/s²) referencial

Puntos de Monitoreo	Resultado L _{a,w} expresado en dB	Nivel Máximo Referencial por Zona de aplicación expresado en dB ⁽¹⁾
R-8 Tala	0,0	
R-7C Calientes	0,0	
R-7B Alto Coscore	0,0	
R-10 Chilota	0,0	
R-11 Huachunta	0,0	100
R-4	0,0	100
R-5	0,0	
R-1	0,0	
R-2	0,0	
R-3	0,0	
RP-1	0,0	110
RP-5	0,0	110


La,w: Aceleración expresado en dB, con referencia a 10-6 m/s2

(1): Adaptado del ISO 2631-2:2003 "Evaluación de exposición humana a vibraciones del cuerpo entero, Parte 2: Vibración continúa inducida por shock de instalaciones (1 a 80 Hz)", 2003.

Elaboración: ASILORZA, 2021.

3.2.4 CALIDAD DE SUELO

El Monitoreo de calidad de suelo fue llevado a cabo entre los días 10 y 19 de octubre del 2020, donde se ha realizado la medición en 19 puntos de monitoreo distribuidos en la Zona de Operaciones del Proyecto Minero Quellaveco.

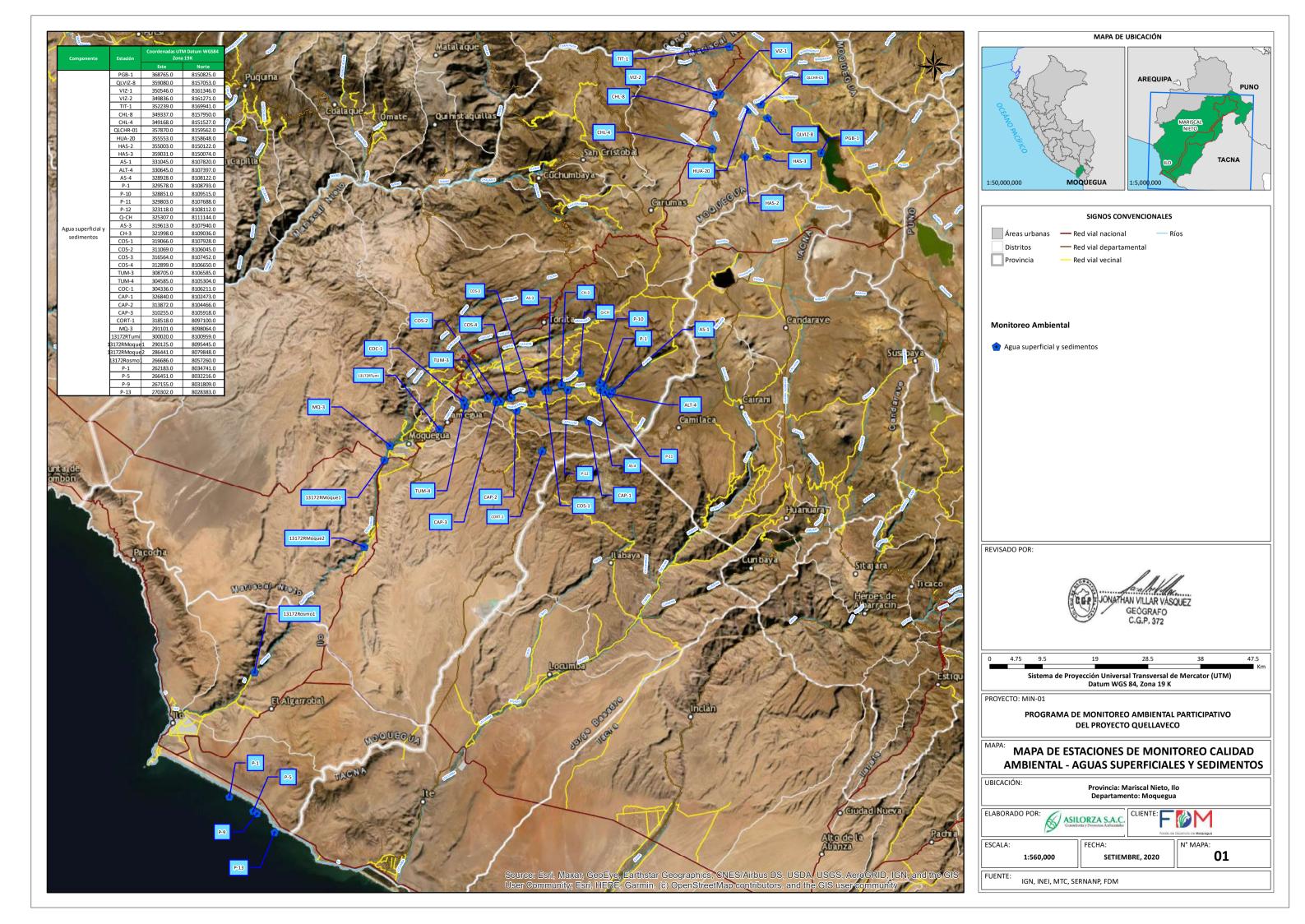
Cuadro 21. Resultados de Calidad de Suelo – Parte I

Parámetro de	l luciale al					Puntos de	Monitoreo					ECA ⁽¹⁾
Muestreo	Unidad	QU-04	QU-11	QU-201	QU-18	QU-215	QU-10	QU-28	QU-36	QU-44	QU-103 (a)	ECA (±/
Cianuro Libre	mg/kg MS	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	8
Cromo Hexavalente	mg/kg MS	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	1,4
Hidrocarburos totales de petróleo F1 (C6-C10)	mg/kg MS	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	500
Hidrocarburos totales de petróleo F2 (C10- C28)	mg/kg MS	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	5 000
Hidrocarburos totales de petróleo F3 (C28- C40)	mg/kg MS	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	6 000
Bifenilos Policlorados (PCB)	mg/kg MS	<0,035	<0,035	<0,035	<0,035	<0,035	<0,035	<0,035	<0,035	<0,035	<0,035	33
Benceno	mg/kg MS	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	0,03
Etilbenceno	mg/kg MS	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	0,082
Tolueno	mg/kg MS	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	0,37
Xileno	mg/kg MS	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	11
Tetracloroetileno	mg/kg MS	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	0,5
Tricloroetileno	mg/kg MS	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	0,01
Benzo(a) pireno	mg/kg MS	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	0,7
Naftaleno	mg/kg MS	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	22
Arsénico	mg/kg MS	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	15,69	<3,00	140
Bario	mg/kg MS	257,81	278,76	166,42	54,61	180,15	132,23	220,12	179,76	74,14	164,43	2 000
Cadmio	mg/kg MS	2,73	3,35	5,73	5,00	3,18	2,57	4,13	3,45	4,00	0,58	22
Cromo	mg/kg MS	6,61	18,65	21,91	6,78	7,56	4,90	3,04	8,98	13,98	20,59	1 000
Mercurio	mg/kg MS	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	24
Plomo	mg/kg MS	8,36	7,07	10,39	35,13	20,31	11,99	11,31	12,99	9,82	21,39	800

Fuente: Informes de Ensayo IE-20-5729, IE-20-5959, IE-20-6169, IE-20-6308, ANALYTICAL LABORATORY E.I.R.L., 2020.

Cuadro 22. Resultados de Calidad de Suelo – Parte II

Davidos atua da Massatura	l locador al			Pt	untos de Monitor	eo			FCA (1)
Parámetro de Muestreo	Unidad	QU-109	QU-166	QU-167	QU-169 (a)	QU-57	QU-59	QU-82	ECA ⁽¹⁾
Cianuro Libre	mg/kg MS	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	8
Cromo Hexavalente	mg/kg MS	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	1,4
Hidrocarburos totales de petróleo F1 (C6-C10)	mg/kg MS	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	500
Hidrocarburos totales de petróleo F2 (C10-C28)	mg/kg MS	<10	<10	<10	<10	<10	<10	<10	5 000
Hidrocarburos totales de petróleo F3 (C28-C40)	mg/kg MS	<10	<10	<10	<10	<10	<10	<10	6 000
Bifenilos Policlorados (PCB)	mg/kg MS	<0,035	<0,035	<0,035	<0,035	<0,035	<0,035	<0,035	33
Benceno	mg/kg MS	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	0,03
Etilbenceno	mg/kg MS	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	0,082
Tolueno	mg/kg MS	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	0,37
Xileno	mg/kg MS	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	11
Tetracloroetileno	mg/kg MS	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	0,5
Tricloroetileno	mg/kg MS	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	0,01
Benzo(a) pireno	mg/kg MS	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	0,7
Naftaleno	mg/kg MS	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	22
Arsénico	mg/kg MS	<3.00	4,83	14,61	<3,00	32,61	3,01	3,25	140
Bario	mg/kg MS	177,70	110,00	130,88	223,41	93,75	223,79	369,55	2 000
Cadmio	mg/kg MS	5,97	4,15	5,88	0,85	5,74	4,93	4,52	22
Cromo	mg/kg MS	35,76	9,13	9,69	19,18	7,20	17,62	17,25	1 000
Mercurio	mg/kg MS	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	24
Plomo	mg/kg MS	12,43	20,54	19,68	23,67	21,08	20,61	19,64	800


Fuente: Informes de Ensayo IE-20-5729, IE-20-5959, IE-20-6169, IE-20-6308, ANALYTICAL LABORATORY E.I.R.L., 2020.

3.2.5 CALIDAD DE AGUA SUPERFICIAL

El Monitoreo de Calidad de Agua Superficial fue llevada a cabo en 34 puntos de monitoreo en agua superficial (ríos y/o quebradas) y en cuatro (04) puntos de monitoreo en agua de mar (terreno ubicado en llo frente a ENERSUR), siendo llevado a cabo entre los días 09 y 26 de octubre del 2020.

A continuación, en los siguientes mapas se aprecia la ubicación de los puntos de monitoreo de calidad de agua superficial.

Los resultados obtenidos en los puntos de calidad de agua son comparados con los Estándares Nacionales de Calidad Ambiental para Agua Superficial aprobados mediante Decreto Supremo N°004-2017-MINAM, siendo las categorías seleccionadas para los cuerpos continentales (ríos y/o quebradas) y cuerpos marino-costeros, la Categoría 3: Riego de Vegetales y Bebida de Animales y, Categoría 2: Extracción, cultivo y otras actividades marino costeras y continentales, respectivamente.

Cuadro 23. Asignación de la categoría a los puntos de monitoreo de calidad de agua

Puntos de Monitoreo	Componente	Cuerpo Receptor	Categoría ⁽¹⁾
PGB-1	Agua Superficial	Río Vizcachas	Categoría 3
QLVIZ-8	Agua Superficial	Río Vizcachas	Categoría 3
VIZ-1	Agua Superficial	Río Vizcachas	Categoría 3
VIZ-2	Agua Superficial	Río Vizcachas	Categoría 3
TIT-1	Agua Superficial	Río Titire	Categoría 3
CHL-8	Agua Superficial	Río Chilota	Categoría 3
QLCHR-01	Agua Superficial	Río Chincune	Categoría 3
HUA-20	Agua Superficial	Río Calazaya	Categoría 3
HAS-2	Agua Superficial	Quebrada s/n en Pampa Huachunta	Categoría 3
HAS-3	Agua Superficial	Quebrada Vilaje	Categoría 3
AS-1	Agua Superficial	Río Asana	Categoría 3
ALT-4	Agua Superficial	Quebrada Altarani	Categoría 3
P-1	Agua Superficial	Quebrada Millune	Categoría 3
P-10	Agua Superficial	Quebrada Sarallenque	Categoría 3
P-11	Agua Superficial	Río Asana	Categoría 3
P-12	Agua Superficial	Río Asana	Categoría 3
Q-CH	Agua Superficial	Río Charaque	Categoría 3
AS-3	Agua Superficial	Río Asana	Categoría 3
CH-3	Agua Superficial	Río Charaque	Categoría 3
COS-1	Agua Superficial	Río Coscore	Categoría 3
COS-2	Agua Superficial	Río Coscore	Categoría 3
COS-3	Agua Superficial	Río Coscore	Categoría 3
COS-4	Agua Superficial	Río Coscore	Categoría 3
TUM-3	Agua Superficial	Río Tumilaca	Categoría 3
TUM-4	Agua Superficial	Río Tumilaca	Categoría 3
COC-1	Agua Superficial	Quebrada Cocotea	Categoría 3
CAP-1	Agua Superficial	Río Capillune	Categoría 3
CAP-2	Agua Superficial	Río Huancanane	Categoría 3
CAP-3	Agua Superficial	Río Huancanane	Categoría 3
MQ-3	Agua Superficial	Río Moquegua	Categoría 3
13172RTumi	Agua Superficial	Río Tumilaca	Categoría 3
13172RMoque1	Agua Superficial	Río Moquegua	Categoría 3
13172RMoque2	Agua Superficial	Río Moquegua	Categoría 3
13172Rosmo1	Agua Superficial	Río Osmore	Categoría 3
P-1	Agua de mar	Mar frente Engie	Categoría 2
P-5	Agua de mar	Mar frente Engie	Categoría 2
P-9	Agua de mar	Mar frente Engie	Categoría 2
P-13	Agua de mar	Mar frente Engie	Categoría 2

(1) R.J. N°056-2018-ANA.

Fuente: Fondo de Desarrollo de Moquegua, 2020.

Cuadro 24. Resultados de Calidad de Agua – Zona de Alta Montaña (Zona de Abastecimiento de Agua del Proyecto Minero Quellaveco)

							Puntos de	Monitoreo					
			PBG-1	QLVIZ-8	VIZ-1	VIZ-2	TIT-1	CHL-8	QLCHR-01	HUA-20	HAS-2	HAS-3	(0)
Parámetros	Unidad	L.D.M.	Río Vizcachas	Río Vizcachas	Río Vizcachas	Río Vizcachas	Río Titire	Río Chilota	Río Chincune	Río Calazaya	Quebrada s/n en Pampa Huachunta	Qda. Vilaje	ECA ⁽¹⁾
Aceites y Grasas	mg/L	0,48	<0,48	<0,48	<0,48	<0,48	<0,48	<0,48	<0,48	<0,48	<0,48	<0,48	10
Alcalinidad Total	mg/L	5	<5	28	41	34	<5	42	25	30	<5	14	NA
Caudal	m³/s	0,010	0,062	0,213	1,990	1,413	1,507	0,510	0,179	1,599	0,063	0,027	NA
Cianuro Total	mg/L	0,0125	<0,0125	<0,0125	<0,0125	<0,0125	<0,0125	<0,0125	<0,0125	<0,0125	<0,0125	<0,0125	NA
Cianuro WAD	mg/L	0,0125	<0,0125	<0,0125	<0,0125	<0,0125	<0,0125	<0,0125	<0,0125	<0,0125	<0,0125	<0,0125	0,1
Coliformes Termotolerantes	NMP/100ml	1,8	<1,8	<1,8	7,8	<1,8	<1,8	<1,8	<1,8	<1,8	<1,8	13,0	2 000
Coliformes Totales	NMP/100ml	1,8	2,0	<1,8	130,0	<1,8	<1,8	13	<1,8	<1,8	2,0	23,0	NA
Color	UC	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	100
Conductividad	μS/cm	0,010	526,00	332,00	135,30	150,40	2 460,00	208,60	119,10	138,70	588,00	100,20	2 500
Cromo Hexavalente	mg/L	0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	NA
Demanda Bioquímica de Oxígeno (DBO₅)	mg/L	2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	15
Demanda Química de Oxígeno	mg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	40
Detergentes (SAAM)	mg/L	0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	0,2
Dureza total	mg/L	5	98	107	39	74	342	41	78	95	42	24	NA
Enterococos Fecales o Enterococos Intestinales	NMP/100ml	1,8	<1,8	<1,8	27,0	2,0	<1,8	<1,8	<1,8	<1,8	4,5	9,3	20
Escherichia coli	NMP/100ml	1,8	<1,8	<1,8	<1,8	<1,8	<1,8	<1,8	<1,8	<1,8	<1,8	4,5	1 000
Huevos de helmintos	Huevo/I	1,0	<1.0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	1
Larvas (nematodos)	Larvas/I	1,0	<1,0	6,0	9,0	4,0	<1,0	2,0	6,0	5,0	<1,0	<1,0	NA
Oxígeno Disuelto	mg/L	0,1	5,1	5,3	5,5	5,9	5,2	5,0	5,1	6,0	5,0	5,1	≥ 4
рН	Unidad de pH	0,01	7,63	8,27	7,15	8,32	4,50	7,66	8,33	8,15	7,94	7,88	6,5 - 8,5
Potencial Redox	mV	_	56,7	<0,01	-58,30	-72,6	80,3	-33,0	<0,01	<0,01	-3,3	13,2	NA
Sólidos Suspendidos Totales	mg/L	5	8	<5	8	13	98	11	5	7	<5	<5	NA
Sólitos Totales Disueltos	mg/L	5	310	188	80	89	2 132	126	68	81	338	59	NA
Temperatura	°C	0,1	10,7	25,9	17,4	17,7	20,7	17,6	19,3	13,4	11,3	11,2	Δ3
Turbidez	NTU	0,01	7,60	0,70	3,70	7,20	120,00	6,30	2,60	2,70	0,60	7,50	NA.
ifenilos Policlorados (PCB)	μg/L	0,035	<0,035	<0,035	<0,035	<0,035	<0,035	<0,035	<0,035	<0,035	<0,035	<0,035	0,04
Nitrato	mg/L	0,02	2,59	<0,02	0,91	<0,02	1,00	0,82	0,75	0,84	9,76	0,70	100
Nitrito	mg/L	0,02	<0,02	<0,02	0,10	<0,02	0,24	0,10	0,10	0,10	<0,02	0,10	100
Fosfato	mg/L	0,04	<0,04	<0,04	<0,04	<0,04	<0,04	<0,04	<0,04	<0,04	<0,04	<0,04	NA
Sulfato	mg/L	0,2	132,6	62,8	22,4	70,2	20,0	19,7	23,0	22,9	240,1	26,3	1 000
Aluminio	mg/L	0,005	4,214	0,008	0,114	0,008	<0,005	0,087	0,008	0,009	0,120	33,659	5
Antimonio	mg/L	0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	NA NA
Arsénico	mg/L	0,002	<0,002	0,004	<0,002	<0,002	<0,002	0,115	<0,002	<0,002	<0,002	<0,002	0,1
Bario	mg/L	0,0002	0,0629	0,0365	0,0311	0,0398	0,0769	0,0296	0,0467	0,0292	0,0289	0,0317	0,7
Berilio	mg/L	0,0003	<0,0003	<0,0003	<0,0003	0,0003	0,0004	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	0,1
Bismuto	mg/L	0,009	<0,009	<0,009	<0,009	<0,009	<0,009	<0,009	<0,009	<0,009	<0,009	<0,009	NA
Boro	mg/L	0,002	1,128	0,053	0,104	0,128	9,759	0,311	0,008	0,010	0,018	<0,002	1
Cadmio	mg/L	0,0001	<0,0001	0,0002	<0,0001	<0,0001	0,0002	<0,0001	0,0002	0,0002	<0,0001	<0,0001	0,01
Calcio	mg/L	0,002	33,458	19,403	15,148	13,919	99,184	17,950	12,986	14,056	11,105	18,961	NA
Cerio	mg/L	0,02	<0,02	<0,02	<0,02	<0,02	0,02	<0,02	<0,02	<0,02	<0,02	<0,02	NA
Cobalto	mg/L	0,002	0,009	0,002	<0,002	0,002	0,095	<0,002	<0,002	<0,002	<0,002	0,026	0,05
Cobre	mg/L	0,0003	0,0082	0,0004	0,0024	<0,0003	0,0099	0,0030	0,0005	0,0005	0,0026	0,0115	0,2
Cromo	mg/L	0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	0,0002	0,0003	<0,0002	<0,0002	0,1
Estaño	mg/L	0,001	<0,001	0,002	<0,001	<0,001	<0,001	<0,001	0,002	<0,001	<0,001	<0,001	NA
Estroncio	mg/L	0,00004	0,28764	0,17810	0,09970	0,13079	2,06818	0,18330	0,10260	0,10634	0,07880	0,14550	NA

							Puntos de	Monitoreo					
Parámetros	Unidad	L.D.M.	PBG-1	QLVIZ-8	VIZ-1	VIZ-2	TIT-1	CHL-8	QLCHR-01	HUA-20	HAS-2	HAS-3	ECA ⁽¹⁾
rarametros	Ollidad	L.D.IVI.	Río Vizcachas	Río Vizcachas	Río Vizcachas	Río Vizcachas	Río Titire	Río Chilota	Río Chincune	Río Calazaya	Quebrada s/n en Pampa Huachunta	Qda. Vilaje	ECA (=/
Fosforo	mg/L	0,01	<0,01	<0,01	0,02	<0,01	<0,01	0,02	<0,01	<0,01	0,01	<0,01	NA
Hierro	mg/L	0,001	0,680	0,213	0,958	1,211	12,353	0,954	0,656	1,106	1,646	2,885	5
Litio	mg/L	0,0003	0,2903	<0,0003	0,0097	<0,0003	0,0017	0,0363	<0,0003	<0,0003	<0,0003	0,0021	2,5
Magnesio	mg/L	0,005	10,377	6,787	4,779	4,143	23,480	4,627	4,514	4,522	3,555	6,286	NA
Manganeso	mg/L	0,0001	1,5917	0,0062	0,0851	0,1279	0,0024	0,0757	0,0048	0,0148	0,0229	0,3286	0,2
Mercurio	mg/L	0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	0,001
Molibdeno	mg/L	0,0006	<0,0006	<0,0006	<0,0006	<0,0006	<0,0006	<0,0006	<0,0006	<0,0006	<0,0006	<0,0006	NA
Níquel	mg/L	0,0003	0,0117	<0,0003	<0,0003	<0,0003	0,0006	<0,0003	<0,0003	<0,0003	<0,0003	0,0327	0,2
Plata	mg/L	0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	NA
Plomo	mg/L	0,002	0,004	0,005	<0,002	<0,002	<0,002	0,003	0,003	<0,002	<0,002	<0,002	0,05
Potasio	mg/L	0,04	12,03	8,47	5,86	5,12	33,64	4,73	4,03	5,25	3,77	4,18	NA
Selenio	mg/L	0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	0,02
Sílice	mg/L	0,001	35,574	20,292	31,957	26,382	34,329	40,886	33,051	24,209	42,178	62,801	NA
Sodio	mg/L	0,004	52,327	34,280	14,670	16,353	538,993	27,312	13,530	13,003	9,875	10,472	NA
Talio	mg/L	0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	0,0005	<0,0003	0,0020	<0,0003	NA
Titanio	mg/L	0,0007	<0,0007	<0,0007	<0,0007	<0,0007	<0,0007	<0,0007	<0,0007	<0,0007	<0,0007	<0,0007	NA
Uranio	mg/L	0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	NA
Vanadio	mg/L	0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	0,0013	<0,0002	<0,0002	0,0005	<0,0002	NA
Zinc	mg/L	0,0001	0,1630	0,0629	0,0134	0,0650	0,9823	0,0102	0,0560	0,0326	0,0175	0,1397	2

^{(1):} Categoría 3: Riego de Vegetales y Bebida de Animales establecidos en los Estándares Nacionales de Calidad Ambiental para Agua Superficial aprobado mediante Decreto Supremo N°004-2017-MINAM. LMD: Límite de Detección del laboratorio.

[&]quot;<": Por debajo del Límite de Detección del Método del Laboratorio.

Cuadro 25. Resultados de Calidad de Agua – Zona de Operaciones del Proyecto Minero Quellaveco – Parte I

Parameters								Puntos de	Monitoreo					
Colorado Colorado	Parámetros	Unidad	L.D.M.	ΔI T-4	ΔS-1	P-1	P-10			O-CH	CH-3	AS-3	COS-1	FCA (1)
According Regit 6,46	r drametros	Omada	2.5.111.			l								LCA
Case Part	Aceites v Grasas	mg/I	0.48	•			· · · · · · · · · · · · · · · · · · ·							10
Capacita	·	<u> </u>		,	,		<u> </u>		,					
Cemer Total mgst														
Conformation Month Month														
Colforms Metricol Metricol 1,8 1,8 1,8 1,8 1,5 1,8 1,5 1			•			· ·	†	<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>	+	•		
Confirmation (Confirmation (,	,										· · · · · · · · · · · · · · · · · · ·
Color	Termotolerantes	NMP/100ml	1,8	<1,8	4,5	<1,8	13,0	4,0	<1,8	/,8	2,0	4,0	11,0	2 000
Communication Information Information	Coliformes Totales	NMP/100ml	1,8	26,0	130,0	<1,8	170,0	4,0	<1,8	130,0	170,0	79,0	700,0	NA
Common Newswhether mg/L 0.010 40.010	Color	UC	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	100
Demands Societies de Oxigene (1992) mg/L 2,0 42,0	Conductividad	μS/cm	0,010	165,60	164,20	421,00	84,50	125,20	158,30	84,50	102,60	169,10	155,90	2 500
Designer (1980a) Migror (1980a) Mi	Cromo Hexavalente	mg/L	0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	NA
Description Communication	•	mg/L	2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	15
Obligen			-				1			<u> </u>	· ·	·	· ·	
Deterogence SAAAN mg/L	- · · · · · · · · · · · · · · · · · · ·	mg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	40
Duraz total mg/L 5 52 52 108 30 38 50 30 34 54 50 MA	Ÿ	mg/L	0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0.025	<0.025	<0,025	<0,025	<0.025	0,2
Enterococo Feciles of Interococo Feciles of Interocococo Feciles of Interocococo Feciles of Interocococo Feciles of Interocococococococococococococococococococ			•	· ·	,			<u> </u>	· · · · · · · · · · · · · · · · · · ·			•	· ·	
Herende Here			1,8	2,0			<1,8		2,0	<1,8	13,0	2,0	13,0	20
Helweys de heffmitros Huwsyl 1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,		NMP/100ml	1.8	<1.8	2.0	<1.8	4.5	<1.8	<1.8	4.5	<1.8	2.0	4.5	1 000
Larvas Femalodos Larvas Larvas		· · ·	·	· · · · · · · · · · · · · · · · · · ·	·		† · · · · · · · · · · · · · · · · · · ·	· · ·	· · · · · · · · · · · · · · · · · · ·					
Oxigeno Disuelto			,	,			,	,			· · · · · · · · · · · · · · · · · · ·			
pH Unidad de pH	· ·		-		· · · · · · · · · · · · · · · · · · ·				·					
Plantal Redox MV - 1.16 - 1.4,8 - 106,7 - 1.8,7 - 2.0 - 1.2,6 - 1.8,7 - 1.3,7 - 2.0 - 6.0 NA Solidos Suspendidox	9		•	,					,			· · · · · · · · · · · · · · · · · · ·		
Potencial Redox mV - -1,6 -14,8 106,7 -18,7 2,0 12,6 -18,7 -13,7 -20 -5,0 NA	рН		0,01	7,80	7,53	4,67	7,66	7,50	7,37	7,66	7,51	7,96	7,54	6,5 – 8,5
Totales	Potencial Redox	· ·	-	-1,6	-14,8	106,7	-18,7	2,0	12,6	-18,7	-13,7	-20	-6,0	NA
Totales Disueltos mg/L 5 92 101 247 31 77 96 47 61 46 94 NA	Sólidos Suspendidos	ma/l	E	6	c	∠E	∠E	4 E	15	∠E	∠E	∠ E	12	NA
Temperatura °C 0.1 15.2 15.6 9.0 9.8 12.9 14.4 11.3 13.5 15.4 15.4 43 Turbidez NTU 0.01 6.40 7.70 2.90 1.80 5.10 8.70 1.30 0.90 1.40 5.60 NA Bifenilos Policiorados (PCB) μg/L 0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.03	Totales	IIIg/L	5	0	0	\3	\	7	13	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\3	\	12	NA .
Turbidez	Sólitos Totales Disueltos			92										NA
Bifenilos Policlorados (PCB) Mg/L 0,035 <0,035 <0,035 <0,035 <0,035 <0,035 <0,035 <0,035 <0,035 <0,04	•	_												
Nitrato			•						· · · · · · · · · · · · · · · · · · ·				·	
Nitrito mg/L 0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,01 <0,00 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,0	Bifenilos Policlorados (PCB)			· · · · · · · · · · · · · · · · · · ·					-	1				
Fosfato			-	· · · · · · · · · · · · · · · · · · ·								•		
Sulfato mg/L 0,2 47,9 50,1 <0,2 3,4 33,6 56,4 11,8 16,8 23,1 44,1 1000 Aluminio mg/L 0,005 0,152 0,154 13,589 <0,005				·	The state of the s									
Aluminio				,	-		†							
Antimonio mg/L 0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,003 <0,003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,														
Arsénico mg/L 0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						•								
Bario mg/L 0,0002 0,0388 0,0407 0,0084 0,0314 0,0485 0,0390 0,0353 0,0422 0,0488 0,0348 0,7 Berilio mg/L 0,0003 <0,0003				i i										
Berilio mg/L 0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0,0009 <0			-	·										
Bismuto mg/L 0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,009 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <0,000 <td></td> <td></td> <td>-</td> <td></td>			-											
Boro mg/L 0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <			-											
Cadmio mg/L 0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,			-	· ·	•									
Calcio mg/L 0,002 22,472 21,754 26,947 10,306 22,590 20,007 11,051 13,335 19,610 18,158 NA Cerio mg/L 0,02 <0,02				i i	•									
Cerio mg/L 0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 NA Cobalto mg/L 0,002 <0,002			-											
Cobalto mg/L 0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
Cobre mg/L 0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0				_	The state of the s		1							
Cromo mg/L 0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0002 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0			-	· ·										
Estaño mg/L 0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 NA Estroncio mg/L 0,00004 0,14741 0,14353 0,36939 0,07834 0,13772 0,15106 0,09248 0,11095 0,14067 0,13975 NA					•									
Estroncio mg/L 0,00004 0,14741 0,14353 0,36939 0,07834 0,13772 0,15106 0,09248 0,11095 0,14067 0,13975 NA			-									•		
- FOSTOTO I MOZI I 1101 I 1104 I 1107 I 4007 I 4007 I 1104 I 1107 I 4007 I 1007 I 1007 I 1007 I 1007 I 1007 I	Fosforo	mg/L	0,00004	0,14741	0,14333	<0,01	<0,01	0,13772	0,13100	<0,01	0,11093	0,02	0,13973	NA NA

							Puntos de	Monitoreo					
Parámetros	Unidad	L.D.M.	ALT-4	AS-1	P-1	P-10	P-11	P-12	Q-CH	CH-3	AS-3	COS-1	ECA ⁽¹⁾
			Qda. Altarani	Río Asana	Qda. Millune	Qda. Sarallenque	Río Asana	Río Asana	Río Charaque	Río Charaque	Río Asana	Río Coscore	
Hierro	mg/L	0,001	0,466	0,564	0,134	0,073	0,417	0,367	0,018	0,038	0,013	0,249	5
Litio	mg/L	0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	2,5
Magnesio	mg/L	0,005	5,133	5,203	6,622	3,512	6,463	5,014	3,981	4,632	5,557	4,920	NA
Manganeso	mg/L	0,0001	0,0442	0,0475	0,4245	0,0373	0,0352	0,0881	0,0198	0,0223	0,0197	0,0804	0,2
Mercurio	mg/L	0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	0,001
Molibdeno	mg/L	0,0006	<0,0006	<0,0006	<0,0006	<0,0006	<0,0006	<0,0006	<0,0006	<0,0006	<0,0006	<0,0006	NA
Níquel	mg/L	0,0003	0,0013	0,0010	<0,0003	<0,0003	<0,0003	0,0018	<0,0003	<0,0003	<0,0003	<0,0003	0,2
Plata	mg/L	0,002	<0,002	<0,002	<0,002	<0,002	0,004	<0,002	<0,002	<0,002	<0,002	<0,002	NA
Plomo	mg/L	0,002	0,004	<0,002	<0,002	<0,002	<0,002	0,002	<0,002	<0,002	<0,002	<0,002	0,05
Potasio	mg/L	0,04	2,12	1,58	3,00	2,68	3,47	2,66	2,45	2,92	3,39	2,19	NA
Selenio	mg/L	0,001	<0,001	<0,001	<0,001	<0,001	0,003	0,004	<0,001	0,005	<0,001	<0,001	0,02
Sílice	mg/L	0,001	<0,001	<0,001	1,061	0,573	0,199	<0,001	0,411	0,469	0,551	0,535	NA
Sodio	mg/L	0,004	11,703	11,715	11,606	7,633	13,092	11,734	8,626	10,131	13,543	11,535	NA
Talio	mg/L	0,0003	0,0035	0,0049	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	NA
Titanio	mg/L	0,0007	<0,0007	<0,0007	<0,0007	<0,0007	0,0033	<0,0007	<0,0007	<0,0007	<0,0007	<0,0007	NA
Uranio	mg/L	0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	NA
Vanadio	mg/L	0,0002	0,0018	0,0018	<0,0002	<0,0002	<0,0002	0,0026	<0,0002	<0,0002	<0,0002	<0,0002	NA
Zinc	mg/L	0,0001	<0,0001	<0,0001	0,0226	0,0604	<0,0001	0,0164	0,0130	0,0284	0,0226	0,0304	2

^{(1):} Categoría 3: Riego de Vegetales y Bebida de Animales establecidos en los Estándares Nacionales de Calidad Ambiental para Agua Superficial aprobado mediante Decreto Supremo N°004-2017-MINAM. LMD: Límite de Detección del laboratorio.

[&]quot;<": Por debajo del Límite de Detección del Método del Laboratorio.

Cuadro 26. Resultados de Calidad de Agua – Zona de Operaciones del Proyecto Minero Quellaveco – Parte II

							Puntos de	Monitoreo					
Parámetros	Unidad	L.D.M.	COS-2	COS-3	COS-4	TUM-3	TUM-4	COC-1	CAP-1	CAP-2	CAP-3	MQ-3	ECA (1)
raiametios	Officac	L.D.IVI.	Río Coscore	Río Coscore	Río Coscore	Río Tumilaca	Río Tumilaca	Oda. Cocotea	Río Capillune	Río Huancanane	Río Huancanane	Río Moquegua	LCA
Aceites y Grasas	mg/L	0,48	<0,48	<0,48	<0,48	<0,48	<0,48	<0,48	<0,48	<0,48	<0,48	<0,48	10
Alcalinidad Total	mg/L	5	<5	15	64	73	75	22	23	76	73	158	NA
Caudal	m³/s	0,010	2,502	8,525	1,77	1,175	1,046	0,017	0,073	0,031	0,072	0,959	NA NA
Cianuro Total	mg/L	0,0125	<0,0125	<0,0125	<0,0125	<0,0125	<0,0125	<0,017	<0,0125	<0,0125	<0,0125	<0,0125	NA NA
Cianuro WAD	mg/L	0,0125	<0,0125	<0,0125	<0,0125	<0,0125	<0,0125	<0,0125	<0,0125	<0,0125	<0,0125	<0,0125	0,1
Coliformes		· · · · · · · · · · · · · · · · · · ·		10,0123	·	10,0123	10,0123		10,0123		,		
Termotolerantes	NMP/100ml	1,8	49	33	23	70	4,5	<1,8	<1,8	23,0	33,0	23,0	2 000
Coliformes Totales	NMP/100ml	1,8	120,0	270,0	130,0	70,0	78,0	<1,8	4,5	33,0	130,0	240,0	NA
Color	UC	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	100
Conductividad	μS/cm	0,010	182,2	166,4	179,1	234,0	285,0	277,0	105,7	1919,00	1097,00	880,00	2 500
Cromo Hexavalente	mg/L	0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	NA
Demanda Bioquímica de						-							
Oxígeno (DBO ₅)	mg/L	2,0	2,0	<2,0	2,0	2,0	<2,0	<2,0	<2,0	2,0	<2,0	<2,0	15
Demanda Química de	,	_	_	_	_		_	_	_	_	_	_	
Oxígeno	mg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	40
Detergentes (SAAM)	mg/L	0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	0,2
Dureza total	mg/L	5	63	430	63	63	84	99	76	448	76	242	NA
Enterococos Fecales o		1.0					4.0		7.0				
Enterococos Intestinales	NMP/100ml	1,8	4,5	2	7,8	22,0	<1,8	<1,8	7,8	7,8	13,0	7,8	20
Escherichia coli	NMP/100ml	1,8	33	7,8	13	49,0	<1,8	<1,8	<1,8	7,8	23,0	13,0	1 000
Huevos de helmintos	Huevo/I	1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	1
Larvas (nematodos)	Larvas/l	1,0	1,0	2,0	1,0	1,0	3,0	<1,0	2,0	1,0	2,0	<1,0	NA
Oxígeno Disuelto	mg/L	0,1	5,6	5,7	6,0	5,7	6,0	5,6	4,9	7,4	5,9	8,6	≥ 4
	Unidad de	•	7.67		7.60	7.64		2.22	7.04		0.20		
рН	рН	0,01	7,67	7,09	7,68	7,61	7,79	8,82	7,01	8,42	8,28	7,41	6,5 – 8,5
Potencial Redox	mV	-	-30,8	-165	-31,9	-22,5	-35,2	-91,85	-0,55	-62,7	-59,9	-57,75	NA
Sólidos Suspendidos	/1	F	22	40	20	27	22	.F	.5		20	47	NI A
Totales	mg/L	5	32	10	39	27	22	<5	<5	<5	28	17	NA
Sólitos Totales Disueltos	mg/L	5	108	95	102	148	166	160	63	1187	152	520	NA
Temperatura	°C	0,1	18,5	13,6	14,9	19,4	18,5	23,5	19,2	16,2	16,9	17,2	Δ3
Turbidez	NTU	0,01	16	4,8	26,0	12,0	11,0	1,00	<1,30	4,20	11,00	8,00	NA
Bifenilos Policlorados (PCB)	μg/L	0,035	<0,035	<0,035	<0,035	<0,035	<0,035	<0,035	<0,035	<0,035	<0,035	<0,035	0,04
Nitrato	mg/L	0,02	1,13	0,61	2,18	1,12	1,20	41,23	0,81	<0,02	1,13	7,49	100
Nitrito	mg/L	0,02	0,18	<0,02	0,18	0,19	<0,02	0,48	0,10	<0,02	0,19	0,38	100
Fosfato	mg/L	0,04	<0,04	<0,04	<0,04	<0,04	<0,04	<0,04	<0,04	<0,04	<0,04	<0,04	NA
Sulfato	mg/L	0,2	60	56,1	59,4	142,2	149,4	78,4	15,1	370,5	140,6	168,9	1 000
Aluminio	mg/L	0,005	1,932	1,381	2,176	1,675	1,654	0,008	0,075	0,131	1,737	0,814	5
Antimonio	mg/L	0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	NA
Arsénico	mg/L	0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	0,005	<0,002	<0,002	0,1
Bario	mg/L	0,0002	0,0439	0,0284	0,0488	0,0481	0,0555	0,0343	0,0579	0,1553	0,0498	0,0971	0,7
Berilio	mg/L	0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	0,0003	<0,0003	<0,0003	<0,0003	<0,0003	0,1
Bismuto	mg/L	0,009	<0,009	<0,009	<0,009	<0,009	<0,009	<0,0009	<0,009	<0,009	<0,009	<0,009	NA
Boro	mg/L	0,002	<0,002	<0,002	<0,002	<0,002	<0,002	0,226	0,037	4,240	<0,002	1,037	1
Cadmio	mg/L	0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	0,01
Calcio	mg/L	0,002	20,948	22,421	19,447	26,449	30,102	26,754	14,166	147,916	25,786	96,703	NA
Cerio	mg/L	0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	NA
Cobalto	mg/L	0,002	<0,002	<0,002	<0,002	<0,002	<0,002	0,002	<0,002	<0,002	<0,002	<0,002	0,05
Cobre	mg/L	0,0003	0,0504	0,061	0,0039	0,0035	0,0918	0,0003	0,0052	0,0049	0,0074	0,0047	0,2
Cromo	mg/L	0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	0,1
Estaño	mg/L	0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	NA
Estroncio	mg/L	0,00004	0,15422	0,12999	0,1478	0,18506	0,21816	0,19679	0,09921	1,19388	0,18678	0,73187	NA
Fosforo	mg/L	0,000	0,05	0,07	0,04	0,04	0,09	<0,01	0,07	0,04	0,03	0,02	NA NA

							Puntos de	Monitoreo					
Parámetros	Unidad	L.D.M.	COS-2	COS-3	COS-4	TUM-3	TUM-4	COC-1	CAP-1	CAP-2	CAP-3	MQ-3	ECA ⁽¹⁾
			Río Coscore	Río Coscore	Río Coscore	Río Tumilaca	Río Tumilaca	Qda. Cocotea	Río Capillune	Río Huancanane	Río Huancanane	Río Moquegua	
Hierro	mg/L	0,001	1,226	0,46	2,108	1,183	1,063	0,198	0,018	0,069	1,137	0,018	5
Litio	mg/L	0,0003	<0,0003	<0,0003	<0,0003	0,0125	0,0166	<0,0003	<0,0003	0,4721	0,0134	0,1296	2,5
Magnesio	mg/L	0,005	5,163	3,464	4,814	5,328	6,340	4,927	4,811	17,796	5,661	12,263	NA
Manganeso	mg/L	0,0001	0,1727	0,051	0,1441	0,1011	0,1561	0,0507	0,0347	0,0400	0,1015	0,0762	0,2
Mercurio	mg/L	0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	0,001
Molibdeno	mg/L	0,0006	<0,0006	<0,0006	<0,0006	<0,0006	<0,0006	<0,0006	0,0008	0,0056	0,0010	<0,0006	NA
Níquel	mg/L	0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	0,2
Plata	mg/L	0,002	<0,002	<0,002	<0,002	0,006	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	NA
Plomo	mg/L	0,002	<0,002	0,012	0,01	<0,002	0,005	<0,002	0,002	0,004	<0,002	0,002	0,05
Potasio	mg/L	0,04	2,7	2,33	2,5	2,93	3,24	3,33	2,95	7,97	3,36	6,64	NA
Selenio	mg/L	0,001	<0,001	<0,001	<0,001	0,008	0,025	<0,001	0,003	<0,001	0,002	<0,001	0,02
Sílice	mg/L	0,001	<0,001	<0,001	<0,001	<0,001	<0,001	11,037	23,103	<0,001	<0,001	41,216	NA
Sodio	mg/L	0,004	11,314	8,199	10,756	17,596	22,096	24,511	10,053	226,637	18,492	82,097	NA
Talio	mg/L	0,0003	<0,0003	0,0016	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	0,0040	NA
Titanio	mg/L	0,0007	0,0072	0,0052	0,0107	0,0041	0,0070	<0,0007	<0,0007	<0,0007	0,0073	<0,0007	NA
Uranio	mg/L	0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	NA
Vanadio	mg/L	0,0002	0,0005	<0,0002	0,0031	0,0016	0,0015	<0,0002	<0,0002	<0,0002	0,0013	0,0033	NA
Zinc	mg/L	0,0001	0,0125	0,0786	0,0121	0,0018	0,0219	0,0490	0,0142	0,0105	0,0309	0,0270	2

^{(1):} Categoría 3: Riego de Vegetales y Bebida de Animales establecidos en los Estándares Nacionales de Calidad Ambiental para Agua Superficial aprobado mediante Decreto Supremo N°004-2017-MINAM. LMD: Límite de Detección del laboratorio.

[&]quot;<": Por debajo del Límite de Detección del Método del Laboratorio.

Cuadro 27. Resultados de Calidad de Agua – Zona de Operaciones del Proyecto Minero Quellaveco – Parte III

				Puntos de	Monitoreo		
Parámetros	Unidad	L.D.M.	13172RTumi	3172RMoque1	13172RMoque2	13172Rosmo1	ECA ⁽¹⁾
			Río Tumilaca	Río Moquegua	Río Moquegua	Río Osmore	1
Aceites y Grasas	mg/L	0,48	<0,48	<0,48	<0,48	<0,48	10
Alcalinidad Total	mg/L	5	63	174	255	123	NA
Caudal	m³/s	0,01	1,157	0,596	0,342	0,367	NA
Cianuro Total	mg/L	0,0125	<0,0125	<0,0125	<0,0125	<0,0125	NA
Cianuro WAD	mg/L	0,0125	<0,0125	<0,0125	<0,0125	<0,0125	0,1
Coliformes Termotolerantes	NMP/100ml	1,8	4,5	13,0	<1,8	7,8	2 000
Coliformes Totales	NMP/100ml	1,8	1300,0	170,0	33,0	7,8	NA
Color	UC	5	<5	<5	<5	<5	100
Conductividad	μS/cm	0,01	363,0	1005,0	2103,0	2317,0	2 500
Cromo Hexavalente	mg/L	0,01	<0,010	<0,010	<0,010	<0,010	NA
Demanda Bioquímica de Oxígeno (DBO₅)	mg/L	2,0	<2,0	<2,0	<2,0	<2,0	15
Demanda Química de Oxígeno	mg/L	5	<5	<5	<5	<5	40
Detergentes (SAAM)	mg/L	0,025	<0,025	<0,025	<0,025	<0,025	0,2
Dureza total	mg/L	5	107	282	635	628	NA NA
Enterococos Fecales o Enterococos Intestinales	NMP/100ml	1,8	<1,8	9,3	<1,8	2,0	20
Escherichia coli	NMP/100ml	1,8	<1,8	7,8	<1,8	2,0	1 000
Huevos de helmintos	Huevo/I	1	<1,0	<1,0	<1,0	<1,0	1
Larvas (nematodos)	Larvas/l	1,0	2,0	2,0	<1,0	<1,0	NA
Oxígeno Disuelto	mg/L	0,1	6,5	6,6	5,6	5,8	≥ 4
рН	Unidad de pH	0,01	7,69	7,88	7,85	7,60	6,5 - 8,5
Potencial Redox	mV	-	-46,2	-51,15	-12,1	-28,6	NA
Sólidos Suspendidos Totales	mg/L	5	7	7	7	6	NA
Sólitos Totales Disueltos	mg/L	5	214	591	1311	1388	NA
Temperatura	°C	0,1	17,9	14,8	16,1	21,8	Δ3
Turbidez	NTU	0,01	3,50	2,80	3,20	2,10	NA
Bifenilos Policlorados (PCB)	μg/L	0,035	<0,035	<0,035	<0,035	<0,035	0,04
Nitrato	mg/L	0,02	1,72	8,74	35,47	12,05	100
Nitrito	mg/L	0,02	0,19	0,48	1,98	<0,02	100
Fosfato	mg/L	0,04	<0,04	<0,04	<0,04	<0,04	NA
Sulfato	mg/L	0,2	78,9	188,5	429,4	489,5	1 000
Aluminio	mg/L	0,005	0,708	0,171	0,022	0,153	5
Antimonio	mg/L	0,002	<0,002	<0,002	<0,002	<0,002	NA
Arsénico	mg/L	0,002	<0,002	<0,002	<0,002	0,003	0,1
Bario	mg/L	0,0002	0,0466	0,0991	0,1082	0,1157	0,7
Berilio	mg/L	0,0003	<0,0003	<0,0003	<0,0003	<0,0003	0,1
Bismuto	mg/L	0,009	<0,009	<0,009	<0,009	<0,009	NA
Boro	mg/L	0,002	0,247	1,007	1,556	0,536	1
Cadmio	mg/L	0,0001	<0,0001	<0,0001	<0,0001	<0,0001	0,01
Calcio	mg/L	0,002	43,518	107,155	233,122	224,515	NA
Cerio	mg/L	0,02	<0,02	<0,02	<0,02	<0,02	NA
Cobalto	mg/L	0,002	<0,002	<0,002	<0,002	<0,002	0,05
Cobre	mg/L	0,0003	0,0092	0,0052	0,0074	0,0053	0,2
Cromo	mg/L	0,0002	<0,0002	<0,0002	<0,0002	0,0052	0,1
Estaño	mg/L	0,001	<0,001	<0,001	<0,001	<0,001	NA
Estroncio	mg/L	0,00004	0,24943	0,73720	1,44637	1,84642	NA
Fosforo	mg/L	0,01	0,03	0,03	0,27	0,06	NA NA
Hierro	mg/L	0,001	<0,001	<0,001	<0,001	0,254	5
Litio	mg/L	0,0003	0,0144	0,1033	0,0911	0,0667	2,5
Magnesio	mg/L	0,005	6,824	13,337	29,053	33,852	NA
Manganeso	mg/L	0,0001	0,0434	0,0762	0,1114	0,5001	0,2

				Puntos de	Monitoreo		
Parámetros	Unidad	L.D.M.	13172RTumi	3172RMoque1	13172RMoque2	13172Rosmo1	ECA ⁽¹⁾
			Río Tumilaca	Río Moquegua	Río Moquegua	Río Osmore	
Mercurio	mg/L	0,0001	<0,0001	<0,0001	<0,0001	<0,0001	0,001
Molibdeno	mg/L	0,0006	<0,0006	<0,0006	0,0024	<0,0006	NA
Níquel	mg/L	0,0003	<0,0003	<0,0003	<0,0003	<0,0003	0,2
Plata	mg/L	0,002	<0,002	<0,002	<0,002	<0,002	NA
Plomo	mg/L	0,002	0,005	0,002	0,002	<0,002	0,05
Potasio	mg/L	0,04	3,44	6,64	11,41	11,79	NA
Selenio	mg/L	0,001	<0,001	<0,001	<0,001	<0,001	0,02
Sílice	mg/L	0,001	35,061	41,216	35,759	<0,001	NA
Sodio	mg/L	0,004	26,606	82,097	206,868	232,584	NA
Talio	mg/L	0,0003	0,0039	0,0040	0,0070	0,0050	NA
Titanio	mg/L	0,0007	<0,0007	<0,0007	<0,0007	<0,0007	NA
Uranio	mg/L	0,005	<0,005	<0,005	<0,005	<0,005	NA
Vanadio	mg/L	0,0002	0,0004	0,0033	0,0035	<0,0002	NA
Zinc	mg/L	0,0001	0,0085	0,0270	0,0189	0,0230	2

^{1):} Categoría 3: Riego de Vegetales y Bebida de Animales establecidos en los Estándares Nacionales de Calidad Ambiental para Agua Superficial aprobado mediante Decreto Supremo N°004-2017-MINAM. LMD: Límite de Detección del laboratorio.

[&]quot;<": Por debajo del Límite de Detección del Método del Laboratorio.

Cuadro 28. Resultados de Calidad de Agua – Zona Ubicada en Ilo (frente al terreno de ENERSUR)

								Puntos de	Monitoreo						
Parámetros	Unidad	L.D.M.		P-1			P-5			P-9			P-13		ECA (1)
			Superficie	Medio	Fondo	Superficie	Medio	Fondo	Superficie	Medio	Fondo	Superficie	Medio	Fondo	
Aceites y Grasas	mg/L	0,48	<0,48	<0,48	<0,48	<0,48	<0,48	<0,48	<0,48	<0,48	<0,48	<0,48	<0,48	<0,48	2,0
Alcalinidad Total	mg/L	5	127	130	124	127	127	124	127	127	130	127	123	127	NA
Conductividad	μS/cm	0,01	51900,00	44900,00	5000,00	51800,00	50700,00	50500,00	52800,00	53200,00	52900,00	53400,00	53400,0	54100,0	NA
Demanda Bioquímica de	,														
Oxígeno (DBO₅)	mg/L	2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	10
Dureza total	mg/L	5	6029	6010	5973	5973	5954	5991	5973	5991	6029	6047	5973	6047	NA
Oxígeno Disuelto	mg/L	0,1	7,2	4,4	4,0	6,9	3,6	3,0	7,2	5,4	3,3	7,6	6,5	6.2	≥ 2,5
рН	Unidad de pH	0,01	7,82	7,78	7,81	7,67	7,69	7,66	7,56	7,54	7,50	7,64	7,77	7,72	6,8 - 8
Sólidos Suspendidos Totales	mg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	19	<5	<5	90	70
Sólitos Totales Disueltos	mg/L	5	32080	31940	32040	31880	32000	31980	31940	31940	31800	31860	31880	32100	NA
Sulfuro	mg/L	0,02	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	0,05
Temperatura	°C	0,1	17,5	15,9	17,1	16,6	15,5	15,3	17,3	18,0	16,0	16,7	16,3	16,4	Δ3
Turbidez	NTU	0,01	0,50	0,80	0,80	0,50	1.00	1,20	0,80	1,50	7,50	0,40	4,00	21,50	NA
Aluminio	mg/L	0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	NA
Antimonio	mg/L	0,002	<0,002	<0,002	0,144	<0,002	<0,002	0,046	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	0,64
Arsénico	mg/L	0,002	0,904	<0,002	0,251	0,854	<0,002	0,389	0,095	0,758	0,688	0,261	0,429	0,261	0,05
Bario	mg/L	0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	NA
Berilio	mg/L	0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	NA
Bismuto	mg/L	0,009	<0,009	<0,009	<0,009	<0,009	<0,009	<0,009	<0,009	<0,009	<0,009	<0,009	<0,009	<0,009	NA
Boro	mg/L	0,002	2,3	2,94	2,972	2,164	1,154	3,269	2,203	2,024	1,448	2,365	2,488	2,247	NA
Cadmio	mg/L	0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	NA
Calcio	mg/L	0,002	593,975	634,300	609,293	608,609	464,994	739,950	557,727	524,959	473,344	548,873	505,939	500,535	NA
Cerio	mg/L	0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	NA
Cobalto	mg/L	0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	NA
Cobre	mg/L	0,0003	0.3907	0,5067	0,4187	0,4527	0.3197	0.4467	0,3557	0,3907	0.4017	0.4027	0,3287	0,4057	0,05
Cromo	mg/L	0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	NA
Estaño	mg/L	0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	NA
Estroncio	mg/L	0,00004	11,70986	12,67186	12,07386	12,61886	10,27986	14,49886	11,04486	10,73686	10,06586	10,79086	10,09786	10,01286	NA.
Fosforo	mg/L	0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	NA
Hierro	mg/L	0,001	<0,001	<0,001	<0,001	<0,001	<0,01	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	NA NA
Litio	mg/L	0,0003	0,0789	0,0609	0,1349	0,1069	0,1079	0,0429	0,0319	<0,001	0,0709	0,0969	0,0379	0,0569	NA NA
Magnesio	mg/L	0,005	1 777,014	1 999,814	1 896,934	1974,984	1607,994	2276,014	1677,184	1682,034	1557,914	1666,814	1531,554	1553,604	NA NA
Manganeso	mg/L	0,0001	0,3082	0,2772	0,2662	0,3042	0,2822	0,2792	0,2912	0,2762	0,3182	0,2962	0,3212	0,2892	NA NA
Molibdeno	mg/L	0,0001	<0,0006	<0,0006	<0.0006	<0,0006	<0,0006	<0,0006	<0.0006	<0,0006	<0,0006	<0,0006	<0,0006	<0,0006	NA NA
Níguel	mg/L	0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	0,074
Plata	mg/L	0,0003	<0,003	<0,000	<0,003	<0,003	<0,000	<0,000	<0,003	<0,003	<0,000	<0,003	<0,003	<0,003	NA
Plomo		0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	0,03
Potasio	mg/L	0,002	542,8	608,89	569,12	611,43	495,76	692,17	507,95	502,00	473,25	503,94	463,22	464,08	NA
Selenio	mg/L mg/I	0,04	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	0,301	NA NA
Sílice	mg/L	0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	NA NA
	mg/L	0,001	· · · · · ·	ŕ	15 508,045		13707,345	·	13845,845					12870,845	NA NA
Sodio	mg/L	,	14 783,445	16 557,045	i e	16786,245		18925,745	<u> </u>	14010,945	12975,345	13657,445	12621,845	, , , , , , , , , , , , , , , , , , ,	
Talio	mg/L	0,0003	0,1120	0,2150	<0,0003	0,746	0,272	0,562	0,303	<0,0003	0,102	0,3580	<0,0003	0,2640	NA NA
Titanio	mg/L	0,0007	<0,0007	<0,0007	<0,0007	<0,0007	<0,0007	<0,0007	<0,0007	<0,0007	<0,0007	<0,0007	<0,0007	<0,0007	NA NA
Uranio	mg/L	0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	NA NA
Vanadio	mg/L	0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	NA

^{(1):} Categoría 2: Actividades de Extracción y otras Actividades Marino Costeras y Continentales establecidos en los Estándares Nacionales de Calidad Ambiental para Agua Superficial aprobado mediante Decreto Supremo N°004-2017-MINAM.

[&]quot;<": Por debajo del Límite de Detección del Método del Laboratorio.

3.2.6 CALIDAD DE SEDIMENTOS

El Monitoreo de Sedimentos correspondientes al MAP Campaña N°8 Temporada Seca fue llevado a cabo entre los días 09 y 24 de octubre del presente año, realizándose un total de 34 puntos de monitoreo en cuerpos continentales (ríos y/o quebradas) y en cuatro puntos de monitoreo en cuerpos marino-costeros, haciendo un total de 38 puntos de monitoreo para la evaluación de sedimentos.

Debido a que, en la actualidad no contamos con una legislación ambiental en torno a la evaluación de sedimentos, los resultados obtenidos en los puntos de monitoreo serán comparados con normas internacionales, principalmente se tomará como referencia las directrices de calidad ambiental establecidos por el Canadian Council of Ministers of the Environment (CCME).

En el siguiente cuadro, se presentan los resultados correspondientes:

Cuadro 29. Resultados de Sedimentos – Parte I

							Puntos de	Monitoreo					Estándar de Calidad
Parámetros	Unidad	L.C.M.	AS-1	ALT-4	P-11	P-12	CH-3	AS-3	COS-1	Q-CH	P-10	P-1	Ambiental para Sedimento
			Río Asana	Qda. Altarani	Río Asana	Río Asana	Río Charaque	Río Asana	Río Coscore	Río Charaque	Qda. Sarallenque	Qda. Millune	- Norma Canadiens (CEQG)
Material Extraíble por n-Hexano	mg/kg MS	120	<120	<120	<120	<120	<120	<120	<120	<120	<120	<120	NA
Fosfato	mg/kg MS	0,3	<0,30	<0,30	<0,30	<0,30	<0,30	<0,30	<0,30	<0,30	<0,30	<0,30	NA
Nitrato	mg/kg MS	2,13	2,86	2,83	2,85	2,84	29,49	25,18	24,91	16,13	20,14	11,28	NA
Mercurio	mg/kg MS	1,0	<1,0	<1,0	<1,0	1	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	0,17
Aluminio	mg/kg MS	7,00	9037,68	5948,94	11194,9	6621,6	3834,68	8416,31	5394,49	4899,21	19750,03	10372,97	NA
Antimonio	mg/kg MS	3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	NA
Arsénico	mg/kg MS	3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	6,55	5,9
Bario	mg/kg MS	0,30	83,36	54,81	106,25	59,2	70,18	55,41	48,56	59,83	182,27	82,86	NA
Berilio	mg/kg MS	0,10	3,21	8,33	4,12	4,32	1,95	1,88	1,57	1,76	3,10	1,84	NA
Bismuto	mg/kg MS	2,00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	NA
Boro	mg/kg MS	0,80	<0,80	<0,80	<0,80	<0,80	<0,80	<0,80	<0,80	<0,80	<0,80	<0,80	NA
Cadmio	mg/kg MS	0,30	3,88	10,68	4,58	5,26	2,85	2,73	1,99	1,96	4,81	3,25	0,6
Calcio	mg/kg MS	3,00	3686,32	3239,49	4452,14	2865,78	2149,28	2463,08	2684,02	2184,17	1744,47	1472,07	NA
Cerio	mg/kg MS	7,00	17,66	11,55	18,22	1638	13,57	15,17	15,97	18,24	16,46	11,09	NA
Cobalto	mg/kg MS	0,70	13,3	25,79	13,55	12,07	6,11	8,3	4,8	5,36	9,24	5,01	NA
Cobre	mg/kg MS	1,00	36,84	25,83	46,55	42,91	33,98	54,09	33,25	26,27	42,58	26,91	35,7
Cromo	mg/kg MS	1,00	17,49	62,53	22,41	35,34	16,92	9,88	7,72	6,41	16,75	9,62	37,3
Estaño	mg/kg MS	2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	NA
Estroncio	mg/kg MS	0,10	43,08	27,69000	52,44	48,61	20,57	33,37	21,36	20,14	65,92	46,34	NA
Fosforo	mg/kg MS	20,00	246,78	250,97	281,83	219,21	172,73	179,94	192,14	161,83	260,73	187,52	NA
Hierro	mg/kg MS	10,00	21491,53	52730,6	24015,99	28033,67	15722,52	14589,24	11810,93	10693,33	26590,59	1170,01	NA
Litio	mg/kg MS	0,30	5,04	2,96	4,87	2,33	2,97	3,8	4,39	3,93	2,73	2,23	NA
Magnesio	mg/kg MS	7,00	2088,55	3152,3	2136,94	1758,51	1140,98	1596,22	1690,01	1693,24	1555,95	1170,01	NA
Manganeso	mg/kg MS	0,30	404,73	600,72	350,6	374,68	1331,41	455,34	283,75	272,51	219,11	105,72	NA
Molibdeno	mg/kg MS	1,00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	1,12	<1.00	<1.00	<1.00	NA
Níquel	mg/kg MS	2,00	10,66	27,10	11.662	12,17	5,5	6,38	4,6	4,56	9,20	5,91	NA
Plata	mg/kg MS	0,70	<0,70	<0,70	<0,70	<0,70	<0,70	<0,70	<0,70	<0,70	<0,70	<0,70	NA
Plomo	mg/kg MS	3,00	8,42	12,68	20,11	7,39	10,87	14,17	12,37	5,64	7,77	4,44	35,0
Potasio	mg/kg MS	99,00	720,9	473,08	836,22	601,16	744,35	791,20	783,00	906,19	891,93	644,65	NA
Selenio	mg/kg MS	7,00	<7,00	<7,00	<7,00	<7,00	<7,00	<7,00	<7,00	<7,00	<7,00	<7,00	NA
Sílice	mg/kg MS	0,70	<0,70	<0,70	<0,70	<0,70	<0,70	1,31	1,3	<0,70	<0,70	<0,70	NA
Sodio	mg/kg MS	10,00	456,11	341,72	561,56	685,9	214,69	621,92	664,13	547,03	709,16	575,78	NA
Talio	mg/kg MS	0,30	<0,30	<0,30	<0,30	<0,30	<0,30	<0,30	<0,30	<0,30	<0,30	<0,30	NA
Titanio	mg/kg MS	7,00	1143,79	3061,46	1451,26	1654,39	663,11	688,82	552,81	539,6	1020,89	586,3	NA
Uranio	mg/kg MS	3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	3,32	<3,00	NA
Vanadio	mg/kg MS	1,00	80,94	271,72	94,19	116,92	55,58	46,56	39,20	32,64	73,89	50,79	NA
Zinc	mg/kg MS	0,70	59,35	85,4300	83,61	46,9100	37,7	43,2400	38,59	25,61	34,5800	23,42	123

[&]quot;<": Por debajo del Límite de Detección del Método del Laboratorio.

Fuente: Informes de Ensayo IE-20-6083, IE-20-6084, IE-20-6335, ANALYTICAL LABORATORY E.I.R.L., 2020. Elaboración: ASILORZA, 2021.

Cuadro 30. Resultados de Sedimentos – Parte II

							Punto	os de Monitoreo						Estándar de Calidad
Parámetros	Unidad	L.C.M.	13172 RMOQUE-1	13172 RMOQUE-2	MQ-3	13172 RTUMI	CHL-8	VIZ-1	VIZ-2	TIT-1	HAS-2	HAS-3	PGB-1	Ambiental para Sedimento
			Río Moquegua	Río Moquegua	Río Moquegua	Río Tumilaca	Río Chilota	Río Vizcachas	Río Vizcachas	Río Titire	Qda. S/N	Qda. Vilaje	Río Vizcachas	- Norma Canadiense (CEQG)
Material Extraíble por n-Hexano	mg/kg MS	120	<120	<120	<120	<120	<120	<120	<120	<120	<120	<120	<120	NA
Nitrato	mg/kg MS	2,13	6,02	3,35	3,95	5,28	5,36	<2,13	6,85	6,78	4,12	4,43	9,19	NA
Fosfato	mg/kg MS	0,30	<0,30	1,45	<0,30	<0,30	<0,30	13,77	0,88	<0,30	<0,30	<0,30	<0,30	NA
Mercurio	mg/kg MS	1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	0,17
Aluminio	mg/kg MS	7,00	7406,05	7406,05	7406,05	7406,05	7406,05	7406,05	20845,94	8 890,32	7406,05	7406,05	7406,05	NA
Antimonio	mg/kg MS	3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	NA
Arsénico	mg/kg MS	3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	5,9
Bario	mg/kg MS	0,30	51,16	51,16	51,16	51,16	51,16	51,16	352,37	141,90	51,16	51,16	51,16	NA
Berilio	mg/kg MS	0,10	1,52	1,52	1,52	1,52	1,52	1,52	<0,10	<0,10	1,52	1,52	1,52	NA
Bismuto	mg/kg MS	2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	NA
Boro	mg/kg MS	0,80	<0,80	<0,80	<0,80	<0,80	<0,80	<0,80	<0,80	<0,80	<0,80	<0,80	<0,80	NA
Cadmio	mg/kg MS	0,30	2,59	2,59	2,59	2,59	2,59	2,59	9,67	5,66	2,59	2,59	2,59	0,6
Calcio	mg/kg MS	3,00	6361,7	6361,7	6361,7	6361,7	6361,7	6361,7	8747,37	3 909,80	6361,7	6361,7	6361,7	NA
Cerio	mg/kg MS	7,00	20,56	20,56	20,56	20,56	20,56	20,56	34,01	60,55	20,56	20,56	20,56	NA
Cobalto	mg/kg MS	0,70	5,72	5,72	5,72	5,72	5,72	5,72	22,83	6,11	5,72	5,72	5,72	NA
Cobre	mg/kg MS	1,00	22,29	22,29	22,29	22,29	22,29	22,29	41,29	90,18	22,29	22,29	22,29	35,7
Cromo	mg/kg MS	1,00	8,84	8,84	8,84	8,84	8,84	8,84	24,82	9,5	8,84	8,84	8,84	37,3
Estaño	mg/kg MS	2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	NA
Estroncio	mg/kg MS	0,10	42,62	42,62	42,62	42,62	42,62	42,62	129,98	77,2	42,62	42,62	42,62	NA
Fosforo	mg/kg MS	20,00	259,39	259,39	259,39	259,39	259,39	259,39	<20,00	<20,00	259,39	259,39	259,39	NA
Hierro	mg/kg MS	10,00	19349,13	19349,13	19349,13	19349,13	19349,13	19349,13	58716,54	43 708,82	19349,13	19349,13	19349,13	NA
Litio	mg/kg MS	0,30	5,21	5,21	5,21	5,21	5,21	5,21	<0,30	<0,30	5,21	5,21	5,21	NA
Magnesio	mg/kg MS	7,00	2553,5	2553,5	2553,5	2553,5	2553,5	2553,5	6738,34	1 910,75	2553,5	2553,5	2553,5	NA
Manganeso	mg/kg MS	0,30	299,32	299,32	299,32	299,32	299,32	299,32	809,13	290,78	299,32	299,32	299,32	NA
Molibdeno	mg/kg MS	1,00	<1,00	<1,00	<1,00	<1,00	<1,00	<1,00	<1,00	<1,00	<1,00	<1,00	<1,00	NA
Níquel	mg/kg MS	2,00	3,88	3,88	3,88	3,88	3,88	3,88	<2,00	<2,00	3,88	3,88	3,88	NA
Plata	mg/kg MS	0,70	<0,70	<0,70	<0,70	<0,70	<0,70	<0,70	<0,70	<0,70	<0,70	<0,70	<0,70	NA
Plomo	mg/kg MS	3	7,50	7,50	7,50	7,50	7,50	7,50	<3,00	7,11	7,50	7,50	7,50	35,0
Potasio	mg/kg MS	99	708,54	708,54	708,54	708,54	708,54	708,54	6839,63	1 886,93	708,54	708,54	708,54	NA
Selenio	mg/kg MS	7	<7,00	<7,00	<7,00	<7,00	<7,00	<7,00	<7,00	<7,00	<7,00	<7,00	<7,00	NA
Sílice	mg/kg MS	0,7	777,72	777,72	777,72	777,72	777,72	777,72	1942,98	1 477,59	777,72	777,72	777,72	NA
Sodio	mg/kg MS	10	734,13	734,13	734,13	734,13	734,13	734,13	1689,02	2 098,25	734,13	734,13	734,13	NA
Talio	mg/kg MS	0,3	<0,30	<0,30	<0,30	<0,30	<0,30	<0,30	<0,30	<0,30	<0,30	<0,30	<0,30	NA
Titanio	mg/kg MS	7	571,99	571,99	571,99	571,99	571,99	571,99	1681,14	773,61	571,99	571,99	571,99	NA
Uranio	mg/kg MS	3	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	NA
Vanadio	mg/kg MS	1	55,59	55,59	55,59	55,59	55,59	55,59	194,04	90,84	55,59	55,59	55,59	NA
Zinc	mg/kg MS	0,7	28,92	28,92	28,92	28,92	28,92	28,92	160,73	82,87	28,92	28,92	28,92	123

[&]quot;<": Por debajo del Límite de Detección del Método del Laboratorio.

Cuadro 31. Resultados de Sedimentos – Parte III

							Puntos de l	Monitoreo					Estándar de Calidad
Parámetros	Unidad	L.C.M.	COS-2	COS-3	COS-4	TUM-3	TUM-4	CAP-1	CAP-2	CAP-3	13172Rosmo-1	COC-1	Ambiental para Sedimento
			Río Coscore	Río Coscore	Río Coscore	Río Tumilaca	Río Tumilaca	Río Capillune	Río Huancanane	Río Huancanane	Río Osmore	Qda. Cocotea	- Norma Canadiense (CEQG
Material Extraíble por n-Hexano	mg/kg MS	120	<120	<120	<120	<120	<120	<120	<120	<120	<120	<120	NA
Nitrato	mg/kg MS	2,13	6,71	4,95	8,02	5,18	49,60	27,30	53,93	18,71	3,01	<0,30	NA
Fosfato	mg/kg MS	0,30	<0,30	2,70	<0,30	<0,30	<0,30	0,89	1,61	<0,30	<0,30	11,13	NA
Mercurio	mg/kg MS	1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	0,17
Aluminio	mg/kg MS	7,00	19303,83	8475,61	9600,60	29881,26	12821,65	7138,20	9016,60	7189,75	4277,73	10 533,47	NA
Antimonio	mg/kg MS	3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	NA
Arsénico	mg/kg MS	3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	4,67	<3,00	5,9
Bario	mg/kg MS	0,30	155,65	76,81	108,19	177,08	103,29	88,29	108,39	45,30	62,83	180,25	NA
Berilio	mg/kg MS	0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	1,25	<0,10	NA
Bismuto	mg/kg MS	2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	NA
Boro	mg/kg MS	0,80	<0,80	<0,80	<0,80	<0,80	<0,80	<0,80	<0,80	<0,80	<0,80	<0,80	NA
Cadmio	mg/kg MS	0,30	5,16	3,03	5,98	3,67	4,35	<0,30	3,15	1,36	2,37	2,64	0,6
Calcio	mg/kg MS	3,00	6700,79	5533,07	5379,91	6725,50	6539,26	2280,73	6162,84	4506,84	47 457,32	10 386,48	NA
Cerio	mg/kg MS	7,00	37,64	31,55	36,73	44,36	35,66	<7,00	35,51	30,31	14,88	43,23	NA
Cobalto	mg/kg MS	0,70	14,94	13,83	12,38	16,53	11,58	11,72	9,12	4,12	5,34	5,95	NA
Cobre	mg/kg MS	1,00	117,76	40,13	110,74	114,65	83,01	29,14	41,54	34,26	15,52	34,96	35,7
Cromo	mg/kg MS	1,00	28,77	5,31	37,78	13,45	22,76	30,56	10,45	2,93	8,41	2,76	37,3
Estaño	mg/kg MS	2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	NA
Estroncio	mg/kg MS	0,10	71,17	33,99	49,68	91,30	59,01	19,62	44,58	26,97	146,60	56,83	NA
Fosforo	mg/kg MS	20,00	<20,00	<20,00	<20,00	<20,00	<20,00	<20,00	<20,00	<20,00	266,48	<20,00	NA
Hierro	mg/kg MS	10,00	38698,45	27516,58	42681,79	31639,29	35134,23	43052,76	29907,85	19758,63	18606,11	25 698,51	NA
Litio	mg/kg MS	0,30	<0,30	<0,30	<0,30	<0,30	<0,30	1,26	<0,30	<0,30	6,25	<0,30	NA
Magnesio	mg/kg MS	7,00	5875,30	5106,59	4894,94	5163,89	5628,59	2720,21	4502,52	3823,61	2480,32	4 561,59	NA
Manganeso	mg/kg MS	0,30	728,99	995,05	867,80	1183,51	836,86	715,81	1376,86	357,95	695,37	734,86	NA
Molibdeno	mg/kg MS	1,00	<1,00	<1,00	<1,00	<1,00	<1,00	<1,00	<1,00	<1,00	<1,00	<1,00	NA
Níquel	mg/kg MS	2,00	<2,00	<2,00	<2,00	<2,00	<2,00	8,49	<2,00	<2,00	2,88	<2,00	NA
Plata	mg/kg MS	0,70	<0,70	<0,70	<0,70	<0,70	<0,70	<0,70	<0,70	<0,70	<0,70	<0,70	NA
Plomo	mg/kg MS	3	9,13	4,07	13,53	6,79	14,10	<3,00	3,69	<3,00	7,05	11,8	35,0
Potasio	mg/kg MS	99	1913,45	1319,14	1586,41	1899,03	1464,18	583,21	1490,52	1260,91	658,20	1 951,04	NA
Selenio	mg/kg MS	7	<7,00	<7,00	<7,00	<7,00	<7,00	<7,00	<7,00	<7,00	<7,00	<7,00	NA
Sílice	mg/kg MS	0,7	2290,81	1480,58	1559,65	1291,76	3175,14	839,02	1818,16	1417,78	27,15	1 628,85	NA
Sodio	mg/kg MS	10	1224,66	1048,87	893,80	1106,53	965,62	315,69	1028,40	922,86	706,22	1 024,11	NA
Talio	mg/kg MS	0,3	<0,30	<0,30	<0,30	<0,30	<0,30	<0,30	<0,30	<0,30	<0,30	<0,30	NA
Titanio	mg/kg MS	7	1276,88	578,87	1096,37	1010,18	834,84	977,99	798,55	592,16	674,57	809,70	NA
Uranio	mg/kg MS	3	<3,00	<3,00	<3,00	<3,00	3,02	<3,00	<3,00	<3,00	<3,00	<3,00	NA
Vanadio	mg/kg MS	1	118,97	56,36	151,57	84,36	103,57	145,21	70,61	42,90	64,69	67,56	NA
Zinc	mg/kg MS	0.7	112,84	61,35	84,58	122,31	76.38	54.49	64,27	49.81	29.56	50.11	123

[&]quot;<": Por debajo del Límite de Detección del Método del Laboratorio.

Cuadro 32. Resultados de Sedimentos – Parte IV

Parámetros	Unidad	L.D.M.	Puntos de Monitoreo							Estándar de Calidad Ambiental para Sedimento
			QLCHR-01 QLVIZ-8 HUA-20 P-13 P-9 P-5 P-1							
			Río Chincune	Río Vizcachas	Rio Calazaya	Mar	Mar	Mar	Mar	- Norma Canadiense (CEC
Material Extraíble por n-Hexano	mg/kg MS	120	<120	<120	<120	<120	<120	<120	<120	NA
Fosfato	mg/kg MS	0,30	<0,30	<0,30	<0,30	-	-	-	-	NA
Nitrato	mg/kg MS	2,13	3,55	12,04	5,19	8,74	15,1	5,93	10,05	NA
Mercurio	mg/kg MS	1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	0,17
Aluminio	mg/kg MS	7,00	2 823,13	1 893,93	9 790,51	2 657,26	2 657,26	2 657,26	2 657,26	NA
Antimonio	mg/kg MS	3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	NA
Arsénico	mg/kg MS	3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	5,9
Bario	mg/kg MS	0,30	49,25	34,48	139,9	9,22	9,22	9,22	9,22	NA
Berilio	mg/kg MS	0,10	<0,10	<0,10	<0,10	0,45	0,45	0,45	0,45	NA
Bismuto	mg/kg MS	2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	NA
Boro	mg/kg MS	0,80	<0,80	<0,80	<0,80	<0,80	<0,80	<0,80	<0,80	NA
Cadmio	mg/kg MS	0,30	<0,30	0,30	<0,30	0,47	0,47	0,47	0,47	0,6
Calcio	mg/kg MS	3,00	1 343,73	1 169,73	2 263,91	121 370,94	121 370,94	121 370,94	121 370,94	NA
Cerio	mg/kg MS	7,00	<7,00	<7,00	<7,00	<7,00	<7,00	<7,00	<7,00	NA
Cobalto	mg/kg MS	0,70	<0,70	<0,70	<0,70	0,92	0,92	0,92	0,92	NA
Cobre	mg/kg MS	1,00	<1,00	<1,00	2,95	4,07	4,07	4,07	4,07	35,7
Cromo	mg/kg MS	1,00	<1,00	<1,00	<1,00	2,69	2,69	2,69	2,69	37,3
Estaño	mg/kg MS	2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	NA
Estroncio	mg/kg MS	0,10	17,55	9,99	24,29	872,97	872,97	872,97	872,97	NA
Fosforo	mg/kg MS	20,00	<20,00	<20,00	<20,00	394,94	394,94	394,94	394,94	NA
Hierro	mg/kg MS	10,00	20 374,52	22 888,43	14 752,94	4319,61	4319,61	4319,61	4319,61	NA
Litio	mg/kg MS	0,30	<0,30	<0,30	<0,30	1,38	1,38	1,38	1,38	NA
Magnesio	mg/kg MS	7,00	757,96	1 237,03	2 661,69	1850,45	1850,45	1850,45	1850,45	NA
Manganeso	mg/kg MS	0,30	379,84	282,28	230,11	63,96	63,96	63,96	63,96	NA
Molibdeno	mg/kg MS	1,00	<1,00	<1,00	<1,00	<1,00	<1,00	<1,00	<1,00	NA
Níquel	mg/kg MS	2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	NA
Plata	mg/kg MS	0,70	<0,70	<0,70	<0,70	<0,70	<0,70	<0,70	<0,70	NA
Plomo	mg/kg MS	3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	35,0
Potasio	mg/kg MS	99,00	376,87	792,53	1 394,84	569,74	569,74	569,74	569,74	NA
Selenio	mg/kg MS	7,00	<7,00	<7,00	<7,00	<7,00	<7,00	<7,00	<7,00	NA
Sílice	mg/kg MS	0,70	771,93	548,96	843,98	175,41	175,41	175,41	175,41	NA
Sodio	mg/kg MS	10,00	447,36	383,28	782,61	2901,20	2901,20	2901,20	2901,20	NA
Talio	mg/kg MS	0,30	<0,30	<0,30	<0,30	<0,30	<0,30	<0,30	<0,30	NA
Titanio	mg/kg MS	7,00	810,39	721,66	976,93	178,30	178,30	178,30	178,30	NA
Uranio	mg/kg MS	3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	<3,00	NA
Vanadio	mg/kg MS	1,00	66,56	74,83	50,15	7,96	7,96	7,96	7,96	NA
Zinc	mg/kg MS	0,70	47,07	50,85	39,47	16,12	16,12	16,12	16,12	123

[&]quot;<": Por debajo del Límite de Detección del Método del Laboratorio.

Fuente: Informes de Ensayo IE-20-6083, IE-20-6084, IE-20-6335, ANALYTICAL LABORATORY E.I.R.L., 2020.

Elaboración: ASILORZA, 2021.

3.3 CONCLUSIONES

- Los resultados conseguidos del monitoreo de calidad de aire del MAP Quellaveco Campaña N° 8 correspondiente a la temporada seca del año 2020, nos arroja valores que se encuentran dentro del rango permitido por los Estándares Nacionales de Calidad Ambiental para Aire aprobados mediante D.S. N° 003-2017-MINAM, lo que puede indicarnos que, existe una presencia baja de estos parámetros del aire en las áreas evaluadas trayendo como resultado un nivel óptimo de la calidad del aire.
- En cuanto los resultados obtenidos de la evaluación de la calidad del ruido, hemos podido observar que estos valores se encuentran por debajo de los límites establecidos por los Estándares de Calidad Ambiental para Ruido (D.S. N°085-2003-PCM), pudiendo observarse que, en puntos de monitoreo ubicados en la ciudad de Moquegua, presentan un tránsito vehicular moderado que podría estar incrementando los niveles de ruido en las áreas evaluadas. Esto quiere decir que, los niveles de ruido obtenidos tanto en horario diurno como en horario nocturno en los puntos de monitoreo, no generarían una molestia constante en el desarrollo de las actividades de la población.
- El monitoreo de la calidad de suelo se llevó a cabo en diecinueve (19) puntos de monitoreo distribuidos en la zona de operaciones del Proyecto Minero Quellaveco, esto con la finalidad de realizar el seguimiento y verificación del estado de la calidad del suelo cercano a los componentes del proyecto. De la evaluación realizada se ha podido observar que los resultados indican que los parámetros de suelo, tanto orgánicos que incluyen a los parámetros de hidrocarburos (relacionados a los combustibles) como los inorgánicos (incluyen la presencia de metales pesados) se encuentran por debajo de los valores establecidos de los Estándares Nacionales de Calidad Ambiental para Suelo aprobados mediante Decreto Supremo N°011-2017-MINAM. Esto puede indicarnos que, existe una nula o muy escasa presencia de dichos parámetros en el suelo y que, este no presenta cambios en su calidad.
- La calidad de las aguas de los ríos y quebradas evaluadas en la zona de alta montaña (zona de abastecimiento de agua del Proyecto Minero Quellaveco) arroja valores de parámetros como pH, oxígeno disuelto, conductividad, entre otros, dentro de los límites establecidos para la Categoría 3: Riego de vegetales y bebida de animales de los Estándares Nacionales de Calidad Ambiental para Agua (D.S. N°004-2017-MINAM), si bien se ha evidenciado la presencia de metales pesados como hierro, boro y cobalto en el río Titire, así como una tendencia a la acidez de su pH (la presencia de metales contribuye a los valores de acidez de las aguas), esto puede deberse a su cercanía a zonas con presencia de actividad geotérmica (actividad de géiser o aguas termales). De igual manera, la evaluación del río Chilota presenta valores de arsénico que superan ligeramente los valores de los ECA para agua, principalmente asociado a las características geológicas de la zona, la cual durante la temporada seca (presencia

menor de caudal de agua) aumenta los valores de dicho metal en el río Chilota, tal como se aprecia en la figura N°4.

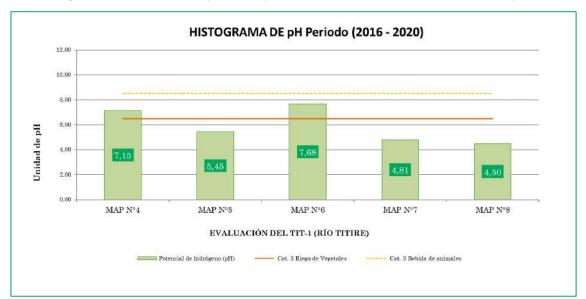
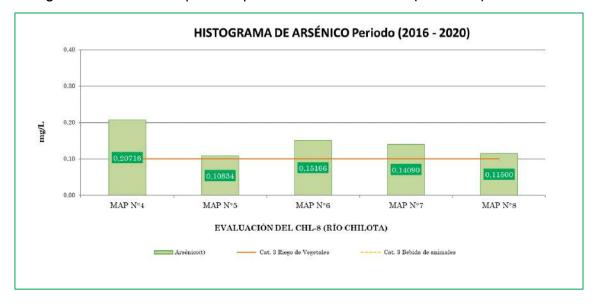



Figura 1: Resultados Comparativos para la evaluación del TIT-1 (Río Titire) en pH

En lo que respecto a los cuerpos de agua ubicados en el área de influencia de la Zona de Operaciones del Proyecto Minero Quellaveco, observamos que se mantiene una buena calidad en el río Asana, tanto aguas arriba como aguas abajo del proyecto. Asimismo, la evaluación en la quebrada Millune arroja valores similares en torno a pH, aluminio y manganeso en comparación con las anteriores campañas, dado que se encuentra en una zona altamente mineralizada.

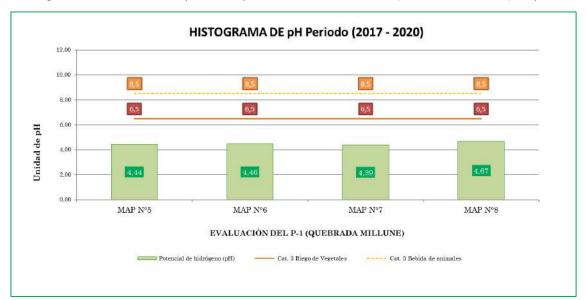


Figura 3: Resultados Comparativos para la evaluación del P-1 (Quebrada Millune) en pH

- En general, la calidad de las aguas evaluadas en la Zona de Alta Montaña, Zona de Operaciones y Moquegua es óptima dado que se encuentran cumpliendo en su mayoría con los Estándares Nacionales de Calidad Ambiental para Agua para Categoría 3: Riego de Vegetales y Bebida de Animales aprobado mediante Decreto Supremo N°004-2017-MINAM.
- En cuanto a la calidad de agua de mar evaluada en los cuatro puntos de monitoreo P-1, P-5, P-9 y P-13, se encuentra cumpliendo con los Estándares Nacionales de Calidad Ambiental para Agua para Categoría 2: Actividades de Extracción y otras Actividades Marino Costeras y Continentales, a excepción de los valores registrados para los parámetros de Arsénico y Cobre, lo cual puede deberse a la presencia de actividad industrial de la zona, dado que se ha evidenciado actividad de la empresa ENERSUR (Engie).

4. MONITOREO BIOLÓGICO E HIDROBIOLÓGICO

El desarrollo del Monitoreo Biológico se llevó a cabo entre los días 09 y 30 de octubre del año 2020, donde se realizó la medición de 63 puntos de flora y un total de veinte (20) puntos para el componente de fauna silvestres, es decir, que incluía las evaluaciones en aves, mamíferos, anfibios y reptiles, así como también se realizaron evaluaciones adicionales en especies específicas de acuerdo con su grado de importancia y su categoría de conservación, tales como el suri (evaluado en cuatro puntos) y mamíferos como la vicuña y taruca (evaluado en seis puntos). Adicional a estos, se evaluó en cuatro puntos de monitoreo el avistamiento de guanacos contando con la participación de toda la brigada biológica.

En cuanto a la evaluación de hidrobiología (especies que habitan en el ámbito acuático), se realizó la evaluación en 27 puntos de monitoreo en los principales cuerpos de agua que se encuentran en el área de influencia del proyecto, tales como el río Asana, la quebrada Altarani, el río Tumilaca, el río Chilota, el río Vizcachas, entre otros.

4.1 METODOLOGÍA DEL MONITOREO BIOLÓGICO

4.1.1 METODOLOGÍA DEL RECOJO DE INFORMACIÓN PARA FLORA

Para el levantamiento de información se tomó como referencia a la "Guía de Inventario de la Flora y Vegetación" del Ministerio del Ambiente de Perú con Resolución Ministerial N° 059-2015 MINAM; además, de seguir la metodología de los monitoreos anteriores. Esta evaluación consiste en emplear transectos de 50 m con el método de Cobertura Repetida (Mateucci & Colima, 1982), que consiste en contar el número de veces que una varilla contacta a cada especie de planta al descender a través de la vegetación hasta el suelo. Las muestras fueron determinadas en campo, en los casos de muestras que no pudieron ser identificadas, se realizó la toma de fotos para ser analizadas en la etapa de gabinete.

Figura 1. Metodología para el levantamiento de Flora

4.1.2 METODOLOGÍA DEL RECOJO DE INFORMACIÓN PARA FAUNA SILVESTRE

La evaluación se realizó siguiendo la "Guía de Inventario de Fauna Silvestre" aprobada mediante Resolución Ministerial N° 057-2015-MINAM y las metodologías usadas en los monitoreos anteriores.

tomando

en

heces, pelos, restos óseos).

Aves: Se realizó la evaluación en ornitología bajo el método de conteo de puntos, que consiste en recorrer un tramo de 2000 metros de largo, separando los puntos de conteo cada 200 metros para realizar el avistamiento de las especies encontradas en cada uno de los puntos.

Figura 2. Conteo de Puntos

<u>Mamíferos mayores:</u> Para la evaluación se realizaron transectos lineales durante horas de la

mañana tratando de abarcar 1 km de recorrido,

(avistamientos), e indirectos (huellas, rasguños,

registros

directos

cuenta

Figura 3. Registro de mamíferos (heces)

Mamíferos menores: Se utilizó el método de transectos con trampas. En cada punto de monitoreo se realizó un transecto lineal de 240 metros, dividido en 25 estaciones con dos trampas de captura viva tipo Sherman, estando cada estación separada 10 m una de la otra.

Figura 4. Trampas Sherman para ratones

Figura 5. Registro de reptiles

Anfibios y Reptiles: Se realizó encuentros visuales (observación directa) por un periodo de 30 minutos en cada uno de los puntos evaluados, con la finalidad de registrar especies de reptiles y anfibios en las áreas de evaluación.

4.1.3 METODOLOGÍA DEL RECOJO DE INFORMACIÓN DEL COMPONENTE HIDROBIOLÓGICO

El monitoreo hidrobiológico consistió en la recolección de plancton (fitoplancton y zooplancton), perifiton, macroinvertebrados bentónicos y peces siguiendo la metodología descrita en "Métodos de colecta, identificación y análisis de comunidades biológicas: plancton, perifiton, bentos (macroinvertebrados) y necton (peces) en aguas continentales del Perú (MINAM – UNMSM 2014)"

- Plancton: Las muestras de Plancton fueron colectadas filtrando 40 litros de agua superficial (tomados en diferentes puntos del río) a través de una red de plancton estándar de 30 micras de diámetro de poro. Luego se preservaron con solución de formol al 5% en frascos de 100 ml previamente rotulados para su posterior análisis.
- Perifiton: La colecta del perifiton se realizó mediante el raspado con una espátula de una superficie 5 x 5 cm sobre rocas, piedras, maderos o superficies de tamaños adecuados (sustrato que se encuentra en la estación a evaluar y que son seleccionados al azar).
- * <u>Bentos:</u> Los macroinvertebrados bentónicos fueron muestreados mediante el uso de una red Surber de marco metálico de 30 x 30 cm y malla de 500 μ que es sostenida en la parte central de la corriente, con la abertura hacia la corriente.
- Peces: Para evaluar a los peces se utilizó un equipo Electrofisher. Se aplicaron descargas a lo largo de los ríos en zonas donde existe mayor probabilidad de encontrar peces, con la finalidad de aturdir a los peces y proceder a la medición y pesado, para luego estos ser devueltos al río.

4.2 PRINCIPALES RESULTADOS DEL MONITOREO BIOLÓGICO E HIDROBIOLÓGICO

4.2.1 COMPONENTE FLORA Y VEGETACIÓN

Los resultados obtenidos en el monitoreo de flora fueron de 57 especies de plantas registradas en la Zona de Operaciones del Proyecto Minero Quellaveco, siendo las especies más importantes por su abundancia y cobertura Diplostephium meyenii, Ambrosia artemisioides y Junellia juniperina, el árbol Polylepis besseri, y la gramínea Stipa ichu. Mientras que, en la Zona de Alta Montaña se registró un total de 57 especies, en que las especies más importantes fueron Distichia muscoides, Alchemilla diplophylla, Phylloscirpus deserticola, Werneria pygmaea y la gramínea Festuca orthophylla.

Asimismo, se registró once (11) especies en la Zona de Operaciones con la categoría de Vulnerables, mientras que, para la Zona de Alta Montaña se registró seis (06) especies con las categorías de CR (Peligro Crítico) y Vulnerable.

Figura 6. Especies de Flora registradas

4.2.2 COMPONENTE FAUNA SILVESTRE

En el caso de aves, se registró un total de 50 especies de aves en la Zona de Operaciones y para la Zona de Abastecimiento, se registró 37 especies, siendo la especie más abundante de la zona de operaciones el "Fringilo de Pecho Cenizo" *Geospizopsis plebejus* y para la zona de abastecimiento el "Churrete de Ala Blanca" *Cinclodes atacamensis*.

De las especies registradas, tres de ellas se encuentran en categoría de conservación Nacional, el "Ñandú Pestizo" Rhea pennata categorizado como Peligro Crítico (CR), el "Halcón peregrino" Falco peregrinus bajo la categoría de "Casi Amenazada" (NT) y la "Parina Grande" Phoenicoparrus andinus categorizado como Vulnerable (VU). Se registraron dos especies endémicas: el "Colibrí Negro" Metallura phoebe y el "Chirigüe de Raimondi" Sicalis raimondii

Figura 7. Ñandu Pestizo

Para el caso de mamíferos, el roedor más abundante de la zona de operaciones fue el "Ratón orejón de Lima" *Phyllotis limatus* con 102 individuos, mientras que para la zona de abastecimiento fue *Abrothrix jelskii* con 17 individuos.

Figura 8. Guanaco

Según la legislación nacional D.S. N° 004-2014-MINAGRI, tres (3) especies se encuentran dentro de esta lista, el "Guanaco" Lama guanicoe categorizado como Peligro Crítico (CR), la "Vicuña" Vicugna vicugna bajo la categoría de "Casi Amenazada" (NT) y la "Taruca" Hippocamelus antisensis categorizada como Vulnerable (VU).

Para el caso de anfibios y reptiles, en la Zona de Operaciones se registró cuatros especies, mientras que para la Zona de Abastecimiento se registró dos especies. La rana acuática *Telmatobius peruvianus* y la lagartija *Liolaemus tacnae* fueron los más abundantes para la ZO y para la ZA la lagartija *Liolaemus* cf. *signifer*, fue la más abundante. De acuerdo con la Legislación Nacional (DS. N° 004-2014-MINAGRI), la rana *Telmatobius peruvianus* y la lagartija *Liolaemus tacnae* se encuentran como Vulnerables.

Figura 9. Liolaemus tacnae

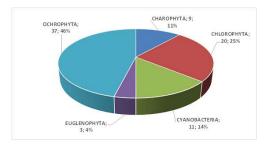


Figura 10. Telmatobius peruvianus

4.2.3 COMPONENTE HIDROBIOLÓGICO

Para la comunidad del plancton se registró una riqueza de 111 especies de plancton. La composición de fitoplancton estuvo representada por 80 especies, distribuidas en cinco divisiones, siendo las Ochrophyta o diatomeas, las dominantes en los hábitats evaluados. La división con mayor abundancia fue Cyanobacteria (62%), algas dominantes en ambientes acuáticos con alta concentración de materia orgánica en descomposición.

La composición del zooplancton estuvo representada por 31 especies agrupadas en siete phyla. El phyllum Rotifera presentó la mayor riqueza de especies (36%, 11 especies La abundancia del zooplancton fue moderada (804 organismo/L).

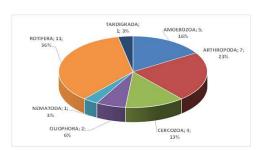
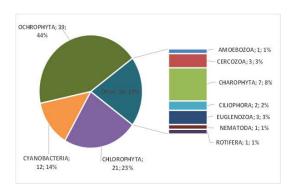



Figura 11. Especies de Plancton

La comunidad del perifiton estuvo representada por 89 especies distribuidas en 10 taxa; cinco de ellas correspondientes a las divisiones de microalgas Charophyta, Chlorophyta, Cyanobacteria, Euglenozoa y Ochrophyta; y cinco a los phylla de microinvertebrados Amoebozoa, Cercozoa, Ciliophora, Nematoda y Rotifera. La abundancia estuvo distribuida en 66% Cyanobacteria, 27% Ochrophyta, 7% Chlorophyta y menos del 1% que reúne a los otros taxa registrados.

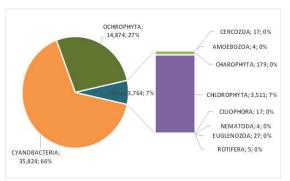


Figura 12. Especies de Perifiton

La comunidad de macrobetos se registraron 62 especies distribuidas en cuatro phyla, siendo los Arthropoda los que registraron una mayor riqueza con 55 especies (89%), seguido de los phyllum Annelida (cuatro especies, 6%), Mollusca (dos especies, 3%) y Nematoda (una especie, 2%).

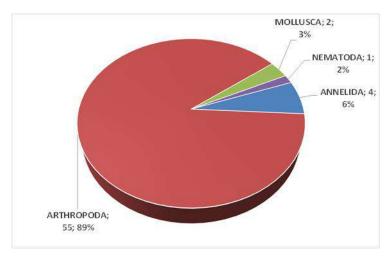


Figura 13. Bentos

Para la comunidad de peces se colectaron 3 especies de peces, dos de ella nativas (*Orestias ispi* "ispi" o "carachi" y *Trichomycterus rivulatus* "bagre") y una especie introducida (*Oncorhynchus mykiss* "trucha arcoiris").

En el rio Asana se encontraron la mayor abundancia siete y diez individuos adultos de trucha en las estaciones P-12y AS-1 respectivamente. En la Quebrada Altari ALT-4, Rio Coscore COS-1 y El rio Vizcacha QLILZ-05 cuatro individuos adultos en cada uno. En el rio Chilota QLCHI-04 y en el rio Calasaya QLHUA-02 se registró un individuo de trucha en cada punto. En la Quebrada Huachunta QLHUA-04, Quebrada Chichune QLCHR-01, y Quebrada Huachunta QLBHUA01 se colectaron truchas en estado de alevinos. En el humedal chilota se muestreo un individuo de trucha y un individuo de *orestias*. Y en rio Tumilaca se colectaron 6 especies de bagre *Trichomycterus rivulatus*.

Figura 14. Evaluación Hidrobiológica de Peces

4.3 CONCLUSIONES

- En los monitoreos anteriores de flora del (2015, 2019 y 2020), en el 2015 donde se registró la mayor riqueza de especies de flora en la zona de operaciones, esto debido a que hubo muchos más transectos de evaluación. En el 2019 y 2020 donde los puntos de monitoreo fueron los mismos, la riqueza varió de 49 a 57 especies, lo que implica cierta estabilidad, tomando en cuenta además que en este último monitoreo no se evaluaron ciertos puntos debido a que se encontraban en zonas intervenidas y/o de difícil acceso. Lo mismo sucedió en la zona de abastecimiento, registrándose la mayor riqueza en el 2015 con 65 especies, seguido del 2020 con 57 especies y el 2019 con 47 especies, no habiendo una diferencia significativa, lo que indica una estabilidad de especies.
- De acuerdo con los resultados obtenidos en los monitoreos de temporada seca en 2015, 2019 y 2020 para la zona de operaciones fue en el monitoreo de 2015 donde se registró el mayor número de especies (60 especies) debido al mayor número de puntos evaluados lo que conlleva a un mayor esfuerzo de muestreo y por tanto mayor registro de especies, le sigue el monitoreo de 2020 con 50 especies y el monitoreo de 2019 con 26 especies. Similar situación ocurrió para la zona de abastecimiento donde en 2015 se registró la mayor riqueza con 54 especies, seguido del monitoreo de 2020 con 37 especies y el monitoreo de 2019 con 27 especies.

- Para la comunidad de mamíferos, se logró obtener resultados de los monitoreos de temporada seca de los años 2015, 2019 y 2020. En base a dichos resultados, para la zona de operación el monitoreo de 2020 registró la mayor riqueza con 11 especies, seguido del monitoreo de 2015 con nueve (9) especies, y el monitoreo de 2019 con ocho (8) especies. Para la zona de abastecimiento la situación fue similar que, en la zona de operación, con una mayor riqueza en 2020 con 13 especies, seguido del monitoreo 2015 con 11 especies, y el monitoreo de 2019 con nueve (9) especies.
- Respecto a herpetofauna, en la zona de operaciones, la riqueza de especies no ha sido significativa, puesto que la variación entre los años 2015, 2019 y 2020 ha sido de una (1) especie, registrándose seis (6) especies en el 2015, cinco (5) especies en el 2019 y cuatro (4) especies en el 2020. Lo mismo sucedió en la zona de abastecimiento, donde la riqueza en los años 2019 y 2020 fue de dos (2) especies, mientras que en el 2015 fue de una (1) sola especie.
- El área de evaluación es un área de bajo manejo ambiental, los valores registrados reflejan un estado de moderado de conservación. Asimismo, estos valores se corroboran con los resultados registrados para los parámetros fisicoquímico, los que se encuentran dentro de los Estándares Nacionales de Calidad Ambiental para Agua Superficial.
- Con respecto al análisis comparativo de hidrobiología se tuvo en consideración que no en todas las evaluaciones coinciden la misma cantidad de puntos de monitoreo hidrobiológico, ni las mismas coordenadas. Asimismo, en varias de las evaluaciones previas el análisis de los resultados se realizado de forma cualitativa. En las evaluaciones realizadas en las temporadas Seca 2018, Época húmedas 2019 y Época seca 2019 se monitorearon las mismas 19 estaciones de muestreo; mientras que en la evaluación de la época seca 2020 se evaluaron 25 estaciones.