Proyecto "Elaboración y ejecución del Programa de Monitoreo Ambiental Participativo (MAP) del Proyecto Quellaveco, en cumplimiento de los compromisos asumidos en la Mesa de Diálogo y el EIA", ejecutado por Pronaturaleza

INFORME DE RESULTADOS DE TERCERA CAMPAÑA DE MONITOREO AMBIENTAL PARTICIPATIVO (MAP III) – ÉPOCA SECA AGUA SUPERFICIAL – ZONA DE ABASTECIMIENTO DE AGUA SUELO, AIRE E HIDROBILOGÍA

VALIDACIÓN DE LA LÍNEA DE BASE AMBIENTAL DEL PROYECTO QUELLAVECO – ÉPOCA SECA AGUA SUPERFICIAL – (ZONA DE ABASTECIMIENTO) DE AGUA, SUELO, AIRE E HIDROBIOLOGÍA

NOVIEMBRE - DICIEMBRE 2014

Preparado por:
Pronaturaleza – Fundación Peruana para la Conservación de la Naturaleza

Para:

El Comité de Monitoreo, Seguimiento y Verificación de los Acuerdos de la Mesa de Diálogo con Anglo American Quellaveco
El Subcomité de Monitoreo Ambiental Participativo del Proyecto
Quellaveco
Anglo American Quellaveco

Documento elaborado por:

Pronaturaleza –Fundación para la Conservación de la Naturaleza

INDICE

1.	GENERALIDADES	5
2.	OBJETIVOS	7
	2.1. Objetivo General	7
	2.2. Objetivos Específicos	7
3.	MARGO LEGAL	8
	3.1. Normas Legales	8
	3.2. Protocolos Consultados	10
4.	ACTIVIDADES DEL MONITOREO	11
5.	MATERIALES Y EQUIPOS UTILIZADOS	17
6.	METODOLOGIA	17
	6.1. MÉTODOS DE TOMA DE MUESTRA Y ANÁLISIS	17
	6.2. Validación de línea de base ambiental:	20
7.	RESULTADOS Y DISCUSIÓN	22
	7.1. Monitoreo de la Calidad del agua superficial – área de abastecimiento	22
	7.1.1. Determinación del Caudal y la época de monitoreo	22
	7.1.2. Ubicación de los puntos de monitoreo	23
	7.1.3. Resultados de los Análisis químicos de laboratorio	24
	7.1.4. Interpretación de los Resultados de Laboratorio	28
	7.2. MONITOREO DE LA CALIDAD DEL SUELO	69
	7.2.1. Ubicación de los puntos de monitoreo	69
	7.2.2. Resultados de los Análisis químicos de laboratorio	70
	7.2.3. Interpretación de los Resultados de Laboratorio	72
	7.2.4. Aseguramiento de la calidad de los resultados	82
	7.3. MONITOREO DE LA CALIDAD DEL AIRE	83
	7.3.1. Ubicación de los puntos de monitoreo de la calidad del aire	83
	7.3.2. Resultados de los Análisis químicos de laboratorio	84
	7.3.3. Interpretación de los Resultados de Laboratorio	86
	7.4. MONITOREO HIDROBIOLÓGICO	92
	7.5 VALIDACION DE LA LÍNEA BASE AMBIENTAL	95
8.	CONCLUSIONES	159
9.	RECOMENDACIONES	160
10	REFERENCIAS BIRI IOGRÁFICAS	160

ANEXOS

- 1. Resultados de Laboratorio Monitoreo de la tercera campaña época seca.
- 2. Validación de línea de base ambiental calidad de agua superficial zona de abastecimiento época seca.
- 3. Validación de línea de base ambiental calidad de aire época seca.
- 4. Fotos del monitoreo

INFORME DE RESULTADOS DE TERCERA CAMPAÑA DE MONITOREO AMBIENTAL PARTICIPATIVO (MAP III) – ÉPOCA SECA AGUA SUPERFICIAL – ZONA DE ABASTECIMIENTO DE AGUA SUELO, AIRE E HIDROBILOGÍA

1. GENERALIDADES

Zona de Abastecimiento de Agua

La Zona de abastecimiento de agua está comprendida por la zona donde se instalará un sistema para la captación y abastecimiento de agua para las operaciones del proyecto minero Quellaveco.

El sistema de abastecimiento de agua del Proyecto Quellaveco, consta de una estructura de captación de agua en el río Titire, un sistema de embalse en el río Vizcachas, un sistema de regulación en el cerro Pelluta y desde éste, una tubería para el transporte de agua por gravedad hasta lel área de operaciones de la mina.

Zona de Operaciones

El área de operaciones de este proyecto minero metálico se ubica en el distrito de Torata, provincia de Mariscal Nieto, departamento de Moquegua. Geográficamente, se encuentra asentada en el valle del río Asana, aproximadamente 40 km al noreste de la ciudad de Moquegua, a una altitud de 3500 msnm y abarca una superficie aproximada de 39 000 hectáreas. El proyecto minero consiste de una mina de cobre con explotación a tajo abierto, considera la explotación del yacimiento de cobre y el procesamiento para producir concentrado de cobre y su embarque para exportación.

Evaluación del Impacto Ambiental

El Estudio de Impacto Ambiental (EIA) del Proyecto Quellaveco, perteneciente a la empresa Anglo American Quellaveco S.A. (en adelante AAQ SA) fue aprobado el 19 de diciembre del 2000, por el Ministerio de Energía y Minas (MINEM) mediante Resolución Directoral N° 266-2000-EM/DGAA.

El 3 de octubre del 2008, se presentó una primera modificatoria del EIA, con cambios relacionados a la ubicación y tamaño de la planta concentradora y el sistema de abastecimiento de agua para la mina. Esta modificatoria del EIA fue aprobada por el MINEM el 23 de abril del 2010.

El 30 de marzo del 2010 fue presentada una segunda modificatoria del EIA la cual realizaba el cambio de la Ruta de Transporte de Concentrados, Líneas de Transmisión Eléctrica e Instalaciones Portuarias la cual fue aprobada por el MINEM el 14 de noviembre de 2010.

La tercera Modificatoria del EIA aprobada el 2012, presenta la Optimización del Diseño y Operación de la Presa Vizcachas.

El Programa de Monitoreo Ambiental Participativo del Proyecto Quellaveco.

Este Programa (en adelante MAP) está relacionado con los compromisos N° 5, 7 y 10 establecidos en la Mesa de Diálogo para analizar la problemática del Departamento de Moquegua¹ con la empresa Anglo American Quellaveco y también como una de las medidas establecidas en la primera modificatoria del EIA.

Mediante la Resolución Ministerial N° 066-2012-PCM del 13 de Marzo del 2012 se formaliza la instalación y conformación del grupo de trabajo denominado "Mesa de Diálogo para analizar la Problemática Minera del departamento de Moquegua". Seguidamente el Informe N° 001-2012-STMd/GR.MOQ, a través del secretario técnico de la Mesa de Diálogo, remite los nombres de los integrantes por cada grupo de trabajo de las comisiones correspondientes, por lo que recomienda derivar a la Dirección Regional de Asesoría Jurídica a fin de que proyecte la Resolución Ejecutiva Regional. El 19 de Septiembre del 2012 según Resolución Ejecutiva Regional N° 1126-2012-GR/MOQ se dispone la conformación de los comités de constitución, monitoreo y vigilancia.

Este Comité el 12 de Junio de 2013 dispone la instalación del Subcomité de Monitoreo Ambiental Participativo del Proyecto Quellaveco, que estaría a cargo de elaborar y presentar el Programa de Monitoreo Participativo y la Validación de la Línea de Base Ambiental del Proyecto de Anglo American Quellaveco (AAQ SA). Este es un Subcomité del Comité de Monitoreo, Seguimiento y Verificación de los Acuerdos de la Mesa de Diálogo con Anglo American Quellaveco.

El Subcomité de Monitoreo Ambiental Participativo Moquegua está compuesto por los siguientes representantes, quienes deberán designar cada uno a un alterno:

- 2 Representantes del Gobierno Regional.
- 1 Representante de la Municipalidad Provincial Mariscal Nieto.
- 1 Representante de la Municipalidad Provincial IIo.
- 1 Representante de la Municipalidad Provincial de Sánchez Cerro.
- 1 Representante de la Comunidad Campesina Tumilaca, Pocata, Coscore y Tala
- 1 Representante de la Sociedad Civil de Ilo: Camara de Comercio
- 1 Representante de la Sociedad Civil de Moquegua: FRAFRAM.
- 2 Representantes de Anglo American Quellaveco

6.

^{1 &}quot;Mesa de Diálogo para analizar la Problemática Minera del Departamento de Moquegua", el mismo que fue conformado en mérito a lo dispuesto por la Resolución Ministerial Nro. 066-2012-PCM y su modificatoria Resolución Ministerial Nro. 142-2012-PCM. Dicho grupo de trabajo concluyó con veintiséis (26) acuerdos referidos al Proyecto Quellaveco, entre ellos la conformación de un Comité de Monitoreo Participativo quien se encargaría de realizar el monitoreo de agua superficial y agua subterránea desde el Río Ilo hasta el Río Asana.

Las funciones del Subcomité de Monitoreo Ambiental Participativo Moquegua son las siguientes:

- Cumplir con el código de conducta del MAP Moquegua.
- Participar en las actividades de verificación de Línea de Base Ambiental del Proyecto Quellaveco.
- Participar en las actividades propias del monitoreo ambiental de acuerdo a los protocolos establecidos, siempre en compañía del Órgano Técnico. En todos los casos se aplicarán los procedimientos y protocolos indicados en este documento y los que puedan ser aprobados por el Subcomité de Monitoreo Ambiental Participativo Moguegua.
- Participar activamente en las diversas actividades que les correspondan en el marco del MAP Moguegua.
- Proponer recomendaciones para el buen funcionamiento del MAP Moquegua.
- Apoyar en la comunicación de los reportes del MAP en su comunidad/centro poblado/anexo y/o área de trabajo/influencia.
- Verificar que se cumplan los protocolos de monitoreo adoptados por el MAP, tomando como base la legislación actual vigente.

En Noviembre del 2013, el Comité de Monitoreo, Seguimiento y Verificación de los Acuerdos de la Mesa de Diálogo con Anglo American Quellaveco, acuerda trabajar con Pronaturaleza-Fundación Peruana para la Conservación de la Naturaleza, para brindar asesoría, capacitación, diseño, planificación, ejecución y comunicación del Programa de Monitoreo Ambiental Participativo en referencia. Es en el marco de esta asistencia técnica que se desarrolla el presente Informe de resultados de tercera campaña de monitoreo ambiental participativo (MAP III) – época seca - Agua superficial – zona de abastecimiento de agua, suelo, aire e hidrobilogía

2. OBJETIVOS

2.1. Objetivo General

Interpretar los resultados obtenidos en la Tercera Campaña de Monitoreo de Agua Superficial - área de abastecimiento de agua- suelo, aire e hidrobiología – época seca - diciembre 2014 del Programa de Monitoreo Ambiental Participativo y la Validación de la Línea de Base Ambiental del Proyecto Quellaveco de Anglo American (AAQSA).

2.2. Objetivos Específicos

- Interpretar los resultados de los parámetros medidos en la Tercera Campaña de Monitoreo de Agua Superficial - área de abastecimiento de agua, suelo, aire e hidrobiología, comparando los resultados entre todas las estaciones de monitoreo.
- Comparar los resultados obtenidos con los datos históricos y de la Línea Base Ambiental del Proyecto Quellaveco de Anglo American (AAQSA) con la finalidad de validarlos.

3. MARGO LEGAL

Existe un marco normativo que tiene como principal objetivo la protección y uso sostenible de los recursos agua superficial, suelo y aire, el que se menciona a continuación:

3.1. Normas Legales

Ley General del Ambiente - Ley N° 28611 (16/10/2005)

Las disposiciones contenidas en la presente Ley, así como en sus normas complementarias y reglamentarias, son de obligatorio cumplimiento para toda persona natural o jurídica, pública o privada, dentro del territorio nacional, el cual comprende el suelo, subsuelo, el dominio marítimo, lacustre, hidrológico e hidrogeológico y el espacio aéreo.

Toda persona tiene el derecho a participar responsablemente en los procesos de toma de decisiones, así como en la definición y aplicación de las políticas y medidas relativas al ambiente y sus componentes, que se adopten en cada uno de los niveles de gobierno. El Estado concierta con la sociedad civil las decisiones y acciones de la gestión ambiental.

Toda persona, natural o jurídica, tiene el deber de participar responsablemente en la gestión ambiental, actuando con buena fe, transparencia y veracidad conforme a las reglas y procedimientos de los mecanismos formales de participación establecidos y a las disposiciones de la presente Ley y las demás normas vigentes. (Artículo 47 – inciso 47.1).

Ley de Recursos Hídricos - Ley N° 29338 (31/03/2009)

Esta Ley tiene por finalidad regular el uso y gestión integrada del agua, la actuación del Estado y los particulares en dicha gestión, así como en los bienes asociados a ésta. En esta medida propicia el cambio en el modo de pensar y en las actitudes sobre el valor, uso y gestión del agua por todos los sectores sociales y productivos, en especial la agricultura, para que su aprovechamiento sea eficiente y productivo, poniendo especial interés en minimizar los impactos en los ecosistemas.

El Artículo 5 de la presente Ley menciona los tipos de agua contemplados para su regulación:

- La de los ríos y sus afluentes, desde su origen natural;
- La que discurre por cauces artificiales;
- La acumulada en forma natural o artificial;
- La que se encuentra en las ensenadas y esteros;
- La que se encuentra en los humedales y manglares;
- La que se encuentra en los manantiales;
- La de los nevados y glaciares;
- La residual;
- La subterránea;
- o La de origen minero medicinal;
- La geotermal;

- o La atmosférica; y
- o La proveniente de la desalación.

Reglamento de la Ley de Recursos Hídricos - D.S N° 001-2010-AG (23/03/2010)

Tiene por finalidad regular el uso y gestión integrada del agua, la actuación del Estado y los particulares en dicha gestión, así como en los bienes asociados a ésta, promoviendo la gestión integrada de los recursos hídricos con el propósito de lograr eficiencia y sostenibilidad en la gestión por cuencas hidrográficas y acuíferos, para la conservación e incremento de la disponibilidad del agua, y para asegurar la protección de su calidad, fomentando una nueva cultura del agua.

Estándares de Calidad Ambiental para el Agua - D.S Nº 002-2008-MINAM (30/07/2008)

Los Estándares Nacionales de Calidad Ambiental para el agua (ECA agua) establecen los niveles de concentración o el grado de elementos, sustancias o parámetros físicos, químicos y biológicos presentes en el agua, en su condición de cuerpo receptor y componente básico de los ecosistemas acuáticos, que no representan riesgo significativo para la salud de las personas ni para el ambiente.

El ECA para agua se divide en las siguientes categorías:

Categoría 1: Aguas para uso Poblacional y Recreacional

Categoría 2: Actividades Marino Costeras

Categoría 3: Riego de vegetales y bebida de animales

Categoría 4: Conservación del Ambiente Acuático

Para el presente informe se tomó como referencia la Categoría 3: "Riego de vegetales y bebida de animales", conforme a lo establecido por la RJ Nº 202-2010-ANA para la cuenca del río Ilo-Osmore-Moquegua (Código cuerpo de agua 13172), donde se incluye a los ríos Asana, Torata, Tumilaca, Huaracane, Quebrada Quellaveco, Quebrada Millune, Quebrada Sarallenque, entre otros.

Estándares de Calidad Ambiental para el Aire

Los Estándares Nacionales de Calidad Ambiental para el aire son aquellos que consideran los niveles de concentración máxima de contaminantes del aire que en su condición de cuerpo receptor es recomendable no exceder para evitar riesgo a la salud humana, están distribuidos en las normas Decreto Supremo N° 074-2001-PCM y ampliado en el Decreto Supremo N° 003-2008-MINAM.

Para el presente informe se realizó la medición del dióxido de azufre, dióxido de nitrógeno, material particulado PM-10, material particulado PM-2.5, monóxido de carbono y plomo, en las estaciones KPA2: Zona de campamento al este de la chancadora, KPA3: Cerro Samanape, KPA4: Tala punto ubicado al este de la chancador, KPA5: Pampa Tolar, punto ubicado al este del depósito de relaves, KPA7: Centro poblado San Antonio.

Estándares de Calidad Ambiental para el Suelo DECRETO SUPREMO Nº 002-2013-MINAM

El Estándar de Calidad Ambiental (ECA) como la medida que establece el nivel de concentración o del grado de elementos, sustancias o parámetros físicos, químicos y biológicos, presentes en el suelo en su condición de cuerpo receptor, que no representa riesgo significativo para la salud de las personas ni al ambiente.

Para el presente informe se realizó la medición de Cianuro, cromo hexavalente, Bifenilos policlorados, BTEX, Fracciones de Hidrocarburos, Hidrocarburos Aromáticos Policíclicos, metales y pesticidas mencionados en el ECA Suelo. Los puntos de monitoreo fueron: "MQAD-01: Aguas abajo de la bocatoma del río Titire, MQ7-A: Cerro Caracoles, MQAADQ3: Aguas Abajo de la poza Q3 y a 200 m. de la misma, MCORALT01: Debajo del límite de la poza de relaves, a 80 m. aprox. del río cortadera, MQ3A: Arriba del depósito de relaves, MQ6A: Río Asana, dentro del depósito de material estéril.

R.M. Nº 304-2008-MEM-DM Normas que regulan el Proceso de Participación Ciudadana en el Subsector Minero.

Según el Artículo 5, de los derechos y principios en los procesos de participación ciudadana. La autoridad competente, los titulares mineros y las poblaciones involucradas en un proceso de participación ciudadana referido a la actividad minera, deberán observar en todas sus actuaciones las siguientes disposiciones generales: a) Del derecho a la participación (El derecho de participación en asuntos referidos a la actividad minera, se ejercita actuando con buena fe, transparencia y veracidad conforme a las reglas y procedimientos de los mecanismos de participación establecidos); b) Del derecho al acceso a la Información (La autoridad competente, los titulares mineros y las poblaciones involucradas, tienen derecho a solicitar, acceder o recibir información pública, de manera adecuada); c) Del principio de respeto a la diversidad cultural (Un proceso de participación ciudadana deben actuar con respeto a las características y particularidades de las diversas culturas). d) Del principio de no discriminación (un proceso de participación ciudadana promueven la participación efectiva de toda persona en dicho proceso, sin distinguir raza, etnia, género, religión, cultura, idioma, opinión política, origen nacional o social, posición económica, orientación sexual, nacimiento o cualquier otra condición). e) Del principio de vigilancia ciudadana (Las poblaciones involucradas tienen el derecho de efectuar el monitoreo, control y seguimiento de las medidas, acciones, obligaciones y compromisos adoptados por el titular minero. f) Del principio del diálogo continuo (La autoridad competente, los titulares mineros y las poblaciones involucradas en un proceso de participación ciudadana, deberán mantener el diálogo continuo a fin de promover y mantener un adecuado relacionamiento social)

3.2. Protocolos Consultados

Se tomó como referencia los Protocolo Nacional de Monitoreo de la Calidad en Cuerpos Naturales de Agua aprobado por R.J-182-2011-ANA, Guía de Muestreo de Suelos R.M. Nº 085-2014-MINAM, Protocolo de monitoreo de la calidad del aire ٧ gestión R.D. Nº 1404/2005/DIGESA. Para el caso de hidrobiología se utilizaron los métodos de colecta, identificación y análisis de comunidades biológicas: plancton, perifiton, bentos (macroinvertebrados) y necton (peces) en aguas continentales del Perú / Departamento de Limnología, Departamento de Ictiología de Lima del Ministerio del Ambiente, 2014.

Estos protocolos y guías establecen los criterios fundamentales para el desarrollo de los monitoreos considerando las pautas para identificar los parámetros, las estaciones de muestreo, procedimientos de toma de muestras, preservación, conservación, envío de muestras y documentos necesarios, que contienen los parámetros establecidos para el monitoreo, la ubicación de los puntos de muestreo y los registros de campo, la medición de caudales, la frecuencia de monitoreo y pautas del muestreo, preservación, conservación y envío de muestras al laboratorio de análisis, permitiendo además incorporar el aseguramiento y control de calidad de monitoreo.

ACTIVIDADES DEL MONITOREO.

Monitoreo de Calidad del Agua superficial - área de abastecimiento de agua

En el MAP III se monitorearon 12 puntos de monitoreo de agua, como se observa en la tabla 01. Los puntos TIT-1, CHB-1, VIZ-1, VIZ-2, CHL-8, CHL-4, PGB-1, HAS-3, HAS-2, HUA-20, CHR-1, son puntos comprendidos en el documento de Modificación del Estudio de Impacto Ambiental. El punto PAJAD-1, es un punto adicional solicitado por el presidente del comité tomado en el rio Pacchani que está aguas arriba del punto TIT 01, con la finalidad de contrastar este punto con el del Titire.

Tabla 01. Puntos de Monitoreo de agua superficial en el área de abastecimiento MAP III

Código del	Coord	lenadas UTM		Área de captación					
punto de muestreo	Este	Norte	Altura	Ubicación	Descripción				
CHB-1	350 135	8 161 160	4 301	Río Chilota antes de la confluencia con el río Vizcachas	El punto está ubicado en el río Chilota, 100 m antes de la confluencia con el río Vizcachas y al costado derecho de la carretera que va desde Humalso a Puno. El río en ese tramo a formando una pequeña playa con presencia de vegetación y pedregosidad en la orilla. El fondo del río es pedregoso y arenoso, con presencia de algas, el agua del río presentaba una coloración amarilla oscura.				
CHL-4	349 168	8 151 527	4 325	Río Chilota, antes de la confluencia con el río Saltiajahuira	Punto ubicado en el Río Chilota, antes de la confluencia con el Río Saltiajahuira, los márgenes están cubiertos de vegetación herbácea y en el fondo se apreció plantas acuáticas y material sedimentario.Cercano al punto encontramos ganado camelido.				
CHL-8	349 532	8 158 316	4 350	Río Chilota, aguas abajo de confluencia con la quebrada Pujulacaya	Punto ubicado en el Río Chilota, cercano al vertedero que utiliza Minera Quellaveco para las mediciones de caudal, el ancho del río es de aproximadamente 5 m y en el lecho se observa la presencia de algas y abundante pedregosidad de tamaño mediano y pequeño. Los márgenes están cubiertas por plantas herbáceas.				
CHR-1	349 346	8 150 165	4 387	Río Chilota, frente a manantial de agua termal, en Pampa Chilota	Ubicado en Pampa Chilota, frente a manantial de agua termal, los márgenes presentan vegetación herbácea, el fondo de río tiene un color oscuro, se ha podido notar la presencia de aves y ganado camélido en el lugar.				
TIT-1	352 482	8 170 277	4 352	Río Titire, 2 000 metros después del pueblo del mismo nombre	Punto de muestreo ubicado en el río Titire, aproximadamente 700 m antes de llegar al pueblo del mismo nombre, este río es aportante del Río Vizcachas. El lecho del río es bastante pedregoso y con material sedimentario, en la margen derecha se ha formado una especie de playa y en la margen izquierda está cubierta de vegetación principalmente herbácea. Se observó restos de basura, provenientes del pueblo.				
HAS-2	355 003	8 150 122	4 487	Quebrada sin nombre en Pampa Huachunta, antes de la descarga de la quebrada Jovinto	Ubicado aguas arriba de la Quebrada Huachunta, a unos 50 m cuesta arriba de la carretera Humalso a Pasto Grande, cercano a esta carretera se encuentra una tubería de fierro antigua. La margen izquierda del río presenta un talud pronunciado con escasa vegetación y la margen derecha es menos pronunciada y con mayor presencia de vegetación.				
HAS-3	359 031	8 150 074	4 550	Quebrada Vilaaje, cerca del canal de Pasto Grande, en dirección Humalso - embalse Pasto Grande	El punto está ubicado a 10 m del canal de pasto grande, cercano a la carretera en dirección Humalso - Pasto Grande. El lecho del río presenta gran cantidad de material sedimentario, así como también plantas acuáticas, las márgenes presentan vegetación herbácea. Existe presencia de ganado de camélidos cercanos a este punto.				
HUA-20	355 553	8 158 648	4 340	Río Calasaya, antes de la confluencia con el río Vizcachas	El punto de muestreo está ubicado aproximadamente 1 Km antes de la confluencia con el Río Vizcachas, cercano a este punto existe una vivienda de pastores, así como también gran cantidad de ganado camélido, el agua discurre lentamente pues en ciertos tramos forma una especie de bofedal, el fondo de la quebrada es pedregoso y con material sedimentado como arena. Las márgenes derecha e izquierda provistas de vegetación herbácea.				
PGB-1	368 961	8 151 191	4 533	Río Vizcachas a la salida del embalse de Pasto Grande	El punto de muestreo está ubicado aguas arriba del Río Vizcachas a 100 metros antes del Embalse de Pasto Grande. Cercano al punto se encuentra el campamento que realiza el mantenimiento al embalse. El lecho del río tiene presencia de plantas acuáticas y abundante pedregosidad				

Tabla 01. Puntos de Monitoreo de agua superficial en el área de abastecimiento MAP III (cont)

Código del	Coord	lenadas UTM	l	Área de captación				
punto de muestreo	Este	Norte	Altura	Ubicación	Descripción			
VIZ-1	350 546	8 161 346		Vizcachas antes de confluencia con río Chilota	El punto está ubicado en el río Vizcachas a 100 m antes de la confluencia con el río Chilota, de sur a norte en el lado derecho de esta confluencia. El río en ese tramo a formando una pequeña playa con presencia pedregosidad en la orilla. El fondo del río es pedregoso y arenoso, con presencia de algas.			
VIZ-2	350 031	8 161 637	4 296	Río Vizcachas después de la confluencia con el río Chilota	El punto está ubicado en el río Vizcachas a 100 m después de la confluencia con el río Chilota, de sur a norte en el lado Izquierdo de esta confluencia, pasando el Puente Vizcachas. El río en ese tramo a formando una pequeña playa con presencia pedregosidad en la orilla. El lecho del río es pedregoso y arenoso, con presencia de algas.			
PAJAD-1	356 144	8 177 810		Rio Pacchani, aguas arriba del punto TIT 01	Este punto está ubicado aproximadamente a 2 km aguas arriba del TIT-1, cerca al río Pacchani.			

Fuente: Anglo American Quellaveco S.A. Proyecto Quellaveco Modificación del Estudio del Impacto Ambiental

Monitoreo de Calidad del aire

En el MAP III – época seca- se monitorearon 05 estaciones de monitoreo de aire como se observa en la tabla 02. Los puntos KPA2, KPA3, KPA4, KPA5 y KPA7, son puntos comprendidos en el documento de Modificación del Estudio de Impacto Ambiental.

Tabla 02. Estaciones de Monitoreo de Calidad de Aire del MAP III

Punto	Ubicación	Coorde	enadas	Altitud
Funto	Oblicacion	Norte	Este	(m)
KPA2	Zona de campamento al este de la chancadora	8108432	329142	3633
KPA3	Cerro Samanape	8107351	328860	4057
KPA4	Tala punto ubicado al este de la chancadora	8109045	321194	3270
KPA5	Pampa Tolar, punto ubicado al este del depósito de relaves	8096872	324951	3635
KPA7	Centro poblado San Antonio – ciudad deMoquegua	8096452	293071	1352

Fuente: Anglo American Quellaveco S.A. Proyecto Quellaveco Modificación del Estudio del Impacto Ambiental

Monitoreo de Calidad del Suelo

En el MAP III se monitorearon 06 puntos de monitoreo de suelos como se observa en la tabla 03. Los puntos MQ3A, MQ6A, MQ7-A, son puntos comprendidos en el documento de Modificación del Estudio de Impacto Ambiental, pero en el muestreo presenta diferente referencia. El punto MCORALT01 se ubica por debajo de la presa de relaves reemplazará a los puntos MQ8A y Q5AA (Capillune y Cortadera)².

_

² La modificación del punto figura en el acta del 7 de diciembre del 2014, la cual se adjuntó en el informe de campo de época seca.

03. Puntos de Monitoreo de Calidad de Suelo del MAP III

Punto	Ubicación	Coorde	enadas
		Norte	Este
MQAD-01:	Zona ubicada a orillas del río Titire aproximadamente a 500 metros aguas abajo de Puente Bello.	8169653	352427
MQ7-A	Cerro Caracoles	8101140	0321542
MQAADQ3:	Aguas Abajo de la poza Q3 y a 200 m. de la misma	8108199	0329753
MCORALT01:	Debajo del límite de la poza de relaves, a 80 m. aprox. del río cortadera.	8096638	0317522
MQ3A:	Arriba del depósito de relaves	8109221	0326687
MQ6A:	Río Asana, dentro del depósito de material estéril.	8103745	0324948

Fuente: Informe de ensayos MA1418066 y MA1418722 Laboratorio de Ensayo Acreditado Registro N° LE-002

Monitoreo de Hidrobiología

En el MAP III se monitorearon 07 puntos de hidrobiología como se observa en la tabla 04. Estos puntos están comprendidos en el documento de Modificación del Estudio de Impacto Ambiental, pero en el muestreo presenta diferente referencia.

Tabla 04. Puntos de Monitoreo de Hidrobiología del MAP III

Punto	Ubicación	Coor	Coordenadas				
Fullo	Obicación	Norte	Este	(m)			
QL-ASA-02	Asana, entrada del túnel	328959	8108071	3612			
QL-ASA-03	Asana, salida del túnel (coincide con el P-12).	321508	8107964	3214			
QL-CHA-02	Charague	322007	8109053	3320			
QL-TUM-01	Tumilaca Zona de Yunguyo	300005	8100951	1664			
QL-VIZ-01	Ubicado sobre río Vizcachas	367864	8151221	4524			
QL DO	Ubicado sobre río Chilota	349026	8150739	4370			
QL-HUA-01	Ubicado sobre río Huachunta	354434	8150585	4428			

Desarrollo del monitoreo:

El monitoreo se realizó del 27 de noviembre al 10 de diciembre donde participaron personal del equipo técnico de SGS, representantes de instituciones invitadas de llo y Moquegua, miembros que pertenecen al Subcomité del MAP Quellaveco.

Tabla 05. Lista de participantes del monitoreo de agua superficial en el área de abastecimiento, suelo y aire

Doutisinonts	Institución	Nov				[Dici	em	bre			
Participante	Institucion	27	2	3	4	5	6	7	9	10	11	12
	Gobierno Regional											
Rodolfo Angles	Moquegua											
	Frente de defensa de											
Jorge Álvarez	pescadores de llo											
	Universidad Nacional de											
Evelyn Agreda	Moquegua											
	Gobierno Regional de											
Agapito Mamani	Moquegua											
	Municipalidad Provincial											
Jorge López	Mariscal Nieto											
	Anglo American											
Beltrán Gómez	Quellaveco											
	Municipalidad provincial											
Juan E. Valdivia	de Sánchez Cerro											
Gerardo Carpio	No determinó											
	Gobierno Regional de											
Elmer Ticona	Moquegua											
	Gobierno Regional de											
Elizabeth Choquepata	Moquegua											
	Gobierno Regional de											
Juan Martínez	Moquegua											
	Anglo American											
Ronnie Mercado	Quellaveco											
	Municipalidad Distrital											
Mercedes Palomino	Samegua											
	Gobierno Regional											
Lilia Mary Miranda	Moquegua											
	Anglo American											
Federico Lewis	Quellaveco											
	Gobierno Regional											
Elvis Coayla	Moquegua											
	Anglo American											
David Condori	Quellaveco											
	Municipalidad Provincial											
Lenia Montalvo	Mariscal Nieto											
Manuel Wiese	Pronaturaleza											

Fuente: Relación de integrantes del MAP III -época seca - PRONATURALEZA

El monitoreo de calidad de aguas superficiales - área de abastecimiento de agua- se realizó según lo establecido en los Protocolos de Monitoreo de Calidad del Agua del Ministerio de Energía y Minas³ y la Autoridad Nacional del Agua. Para el monitoreo de calidad del aire se utilizó el Protocolo de monitoreo de la calidad del aire y gestión de los datos de la DIGESA y para el monitoreo de calidad del suelo se utilizó la Guía de Muestreo de Suelos del MINAM, el cronograma de monitoreo se presenta en la tabla 06.

Tabla 06. Cronograma de monitoreo de agua superficial - área de abastecimiento-, suelo, aire e hidrobiología.

Día	Punto de monitoreo	Observaciones		
27-11-2014	MQAD-01	Suelos		
07-12-2014	MQ7-A	Suelos		
07-12-2014	MQAADQ3	Suelos		
07-12-2014	MCORALT01	Suelos		
07-12-2014	MQ3A	Suelos		
07-12-2014	MQ6A	Suelos		
10 y 11 -12-2014	KPA2	Aire		
11 y 12 -12-2014	KPA3	Aire		
10 y 11 -12-2014	KPA4	Aire		
11 y 12 -12-2014	KPA5	Aire		
03 y 04 -12-2014	KPA7	Aire		
02-12-2014 11:00	TIT-1	Agua superficial		
02-12-2014 16:00	PAJAD-01	Agua superficial		
03-12-2014 16:00	CHB-01	Agua superficial		
03-12-2014 11:30	VIZ-1	Agua superficial		
04-12-2014 09:30	VIZ-2	Agua superficial		
04-12-2014 15:00	CHL-8	Agua superficial		
04-12-2014 17:30	CHL-4	Agua superficial		
09-12-2014 10:00	PGB-01	Agua superficial		
09-12-2014 13:00	HAS-3	Agua superficial		
09-12-2014 16:00	HAS-2	Agua superficial		
10-12-2014 12:00	HUA-20	Agua superficial		
10-12-2014 17:00	CHR-1	Agua superficial		
05-12 -2014	QL-VIZ-01	Hidrobiología		
05-12 -2014	QL-HUA-01	Hidrobiología		
05-12 -2014	QL-BCHI-06	Hidrobiología		
06-12 -2014	QL-ASA-03	Hidrobiología		
06-12 -2014	QL-ASA-02	Hidrobiología		
06-12 -2014	QL-CHA-02	Hidrobiología		
06-12 -2014	QL-TUM-01	Hidrobiología		

Fuente: Informe de ensayos MA1418066 y MA1418722 Laboratorio de Ensayo Acreditado Registro N° LE-002

16.

³ Protocolo de Monitoreo de Calidad del Agua, subsector Minería, Dirección general de Asuntos Ambientales, cumpliendo el Artículo 5to. Del D.S 059-93-EM del 10 de diciembre del 2003.

5. MATERIALES Y EQUIPOS UTILIZADOS.

Los materiales y equipos de laboratorio que fueron proporcionados por el laboratorio SGS.

Monitoreo de calidad de agua

- Correntómetro
- Conductímetro
- Medidor de pH
- Termómetro deindicación digital

Monitoreo de Aire

- Manómetro de columna líquida
- Muestreador de partículas
- Estación meteorológica

Monitoreo de suelo

- Espátula
- Lampas
- Pico
- Barreta
- Guantes para muestreo (latex o vinilo)
- Cinta métrica (wincha) de unos de 2 metros
- Bolas y recipientes para las muestras

Hidrobiología

Para el caso de hidrobiología los materiales fueron proporcionados por Greenlab y fueron los siguientes:

- Red de fitoplancton de una malla de 20 μm
- Red Surber de 30 x 30 cm de lado y con una apertura de malla de 250 μm.
- Marco cuadrado de 5 x 5 cm para colecta de perifiton.
- Multiparametro Ponsel Modelo Mesure de 3 sensores previamente calibrado

6. METODOLOGÍA

6.1. MÉTODOS DE TOMA DE MUESTRA Y ANÁLISIS

La metodología empleada para la realización de los trabajos de campo se basó en el Protocolo Nacional de Monitoreo de la Calidad en Cuerpos Naturales de Agua aprobado por RJ182-2011-ANA, la Guía de Muestreo de Suelos R.M. N° 085-2014-MINAM y el Protocolo de monitoreo de la calidad del aire y gestión de los datos R.D. N° 1404/2005/DIGESA. Dichos protocolo establecen los criterios

Pronaturaleza

fundamentales para el desarrollo de los monitoreos considerando las pautas para identificar los parámetros, las estaciones de muestreo, procedimientos de toma de muestras, preservación, conservación, envío de muestras y documentos necesarios. Las metodologías utilizadas para la medición de cada parámetro se presentan en tabla 06, 07 y 08.

Tabla 07. Métodos de ensayo utilizados para la medición de los parámetros de calidad del agua

Parámetro	Método
Conductividad	SMEWW-APHA-AWWA-WEF Part 2510-B: 2012; 22nd Ed Conductivity: Laboratory
	Method
Temperatura	SMEWW-APHA-AWWA-WEF Part 2550-B: 2012; 22nd Ed - Temperature, Laboratory and
	Field Method
Potencial de	SMEWW-APHA-AWWA-WEF Part 4500-H+ B, 2012; 22nd Ed. pH Value. Electrometric
Hidrógeno.	Method.
Medición de caudal	ASTM D3858-95 (2003) Standard Test Method For Open Channed Flow Measurement Of Water By Velocity –Area Method.
Oxígeno Disuelto.	ASTM D 888-12 e1, 2013 Standard Test Methods for Dissolved Oxygen in Water Test Method
	C Instrumental Probe Procedure Luminescence Based Sensor.
Alcalinidad-	SMEWW-APHA-AWWA-WEF Part 2320 B: 2012; 22nd Ed Alkalinity Titration Method
Bicarbonato	
Bicarbonatos	SMEWW-APHA-AWWA-WEF Part 2320 B: 2012; 22nd Ed Alkalinity Titration Method
Carbonatos	SMEWW-APHA-AWWA-WEF Part 2320 B: 2012; 22nd Ed Alkalinity Titration Method
Alcalinidad Total	SMEWW-APHA-AWWA-WEF Part 2320 B: 2012; 22nd Ed Alkalinity Titration Method
Dureza Total	SMEWW-APHA-AWWA-WEF Part 2340-C: 2012; 22nd Ed Hardness: EDTA Titrimetric
	Method.
Sólidos Disueltos	SMEWW-APHA-AWWA-WEF Part 2540-C: 2012; 22nd Ed Solids:Total Dissolved Solid dried
Totales	at 180°C
Sólidos Totales en	SMEWW-APHA-AWWA-WEF Part 2540-D: 2012; 22nd Ed Solids: Total Suspended Solids
Suspensión	dried at 103-105 °C
Cromo Hexavalente	SMEWW-APHA-AWWA-WEF Part 3500-CR-B: 2012; 22nd Ed Chromium. Colorimetric
Total	Method
Nitrógeno Amoniacal	SMEWW-APHA-AWWA-WEF Part 4500-NH3 D: 2012; 22nd Ed Nitrogen (Ammonia).
	Ammonia-Selective Electrode Method
Fósforo Total	SMEWW-APHA-AWWA-WEF Part 4500-P B Item 5, E: 2012; 22nd Ed Phosphorus. Sample
	Preparation 5. Persulfate Digestion Method. Ascorbic Acid Method
Fosforo Reactivo	APHA-AWWA-WEF 4500-P-E, 2005 21st Ed. Phosphorus: Ascorbic Acid Method
Disuelto	
Sulfuro	SMEWW-APHA-AWWA-WEF Part 4500 S2 - D: 2012; 22nd Ed Sulfide. Methylene Blue
	Method
Demanda Bioquímica	SMEWW-APHA-AWWA-WEF Part 5210 B: 2012; 22nd Ed Biochemical Oxygen Demand
de Oxígeno	(BOD): 5-Day BOD test
Demanda Química de	SMEWW-APHA-AWWA-WEF Part 5220 D: 2012; 22nd Ed Chemical Oxygen Demand,
Oxígeno	Closed Reflux, Colorimetric Method
Cianuro libre	ASTM, D 7237-10, 2010. Standard Test Method for free Cyanide with flow Injection (FIA)
	Utilizing Gas Diffusion Separation and Amperometric Detection
Cianuro total	ASTM D7511-09e2.Standard Test Method for Total Cyanide by Segmented Flow Injection
	Analysis, In-Line Ultraviolet Digestion and Amperometric Detection (Validado).
Metales Totales	EPA 200.8: 1994 Rev 5.4 Determination of Trace Elements in Waters and Wastes by
	Inductively Coupled Plasma - Mass Spectrometry.
Aniones	EPA 300.0:1993; Rev. 2.1 Determination of Inorganic Anions by Ion Chromatography.

Fenoles	EPA Method 420.2:1974, Phenolics- Colorimetric, Automated 4-AAPWith Distillation / EPA Method 420.4,1993, Rev01, Determination of Total recoverable Phenolics by semi-automated colorimetry (Validado)
S.A.A.M.(Detergentes)	ISO 16265:2009; 1st.Ed Determination of Methylene blue active substances (MBAS) index- Method using CFA (validado).
Cianuro WAD	EPA Method OIA-1677, DW Avaliable Cyanide by Flow Injection, Ligande Exchange and Amperometry
Aceites y Grasas	EPA 1664, Rev. 01(Validado) Determinación de Aceites y Grasas según EPA-Método 1664 Revisión A - Modificado.
Silicatos (Si-SiO3)	SGS-ENVIDIV-ME-14: 2012; Rev 01. Determinacion de Silicato en aguas.

Tabla 08. Métodos de ensayo utilizados para la medición de los parámetros de calidad del Suelo

Parámetro		Método
Metales		EPA 200.8: 1994 Rev 5.4 Determination of Trace Elements in Waters and Wastes by Inductively
		Coupled Plasma - Mass Spectrometry.
Cromo Hexavalente)	EPA 3060A, Rev.01, 1996, Alkaline Digestion for Hexavalent Chromium / EPA 7196A, Rev.01,
		1992, Chromium, Hexavalent (Colorimetric). Validado 2013
Fracción	de	EPA 8015C 2007 Rev.3 Nonhalogenated Organics by Gas Chromatography. (C10-C28)
Hidrocarburos F2		
Fracción	de	EPA 8015C 2007 Rev.3 Nonhalogenated Organics by Gas Chromatography. (C28-C40)
Hidrocarburos F3		
Fracción	de	EPA 8015C 2007 Rev.3 Nonhalogenated Organics by Gas Chromatography. (C5-C10)
Hidrocarburos F1		
Bifenilos Policlorado	os	EPA 8082A 2007 Rev. 1 Polychlorinated Biphenyls (PCBs) by Gas Chromatography
BTEX		EPA 8015C 2007 Rev.3 Nonhalogenated Organics by Gas Chromatography.
Hidrocarburos		EPA 8270D 2007 Rev. 4 Semivolatile Organic Compounds by Gas Chromatography Mass
Aromáticos		Spectrometry (GC/MS) Polinucleares
Pesticidas		EPA 8270D 2007 Rev. 4 Semivolatile Organic Compounds by Gas Chromatography Mass
		Spectrometry (GC/MS)
Cianuro libre		EPA 9013A, Rev 01, 2004. Cyanide extraction procedure for solids and oils/ ASTM D7237-10,
		2010, Standard Test Method for Free Cyanide with flow Injection (FIA) Utilizing Gas Diffusion
		Separation and Amperometric Detection (Validado).

Tabla 09. Métodos de ensayo utilizados para la medición de los parámetros de calidad del Aire

Parámetro	Método			
Material Particulado	EPA CFR 40 Part 50 Appendix J: 1990; Reference Method for the Determination of Particule			
PM-10 Alto Volumen	Matter as PM10 in the Atmosphere.			
Dióxido de Azufre	EPA 40 CFR PART 50 APPENDIX A-2: 2010; Method for the Determination of Sulfur Dioxide			
	in the Atmosphere (Pararosaniline Method).			
Material Particulado	EPA CFR 40, 2006. Part 50 Appendix L Reference Method for the Determination of Fine			
PM-2.5 Bajo Volumen	Particulate Matter as PM2.5 in the Atmosphere.			
Metales en PM10 Alto	EPA Compendium Method IO-3.5:1999; Determination Of Metals in Ambient Particulate matter			
Volumen	using inductively Coupled Plasma/mass spectroscopy (ICP/MS)(Validado).			
Monóxido de Carbono	SGS-ENVIDIV-ME-15 : 2012; Rev.01 - Determinación de Monóxido Carbono en calidad de aire			
	(Validado).			
Dióxido de Nitrógeno	SGS-ENVIDIV-ME-13 Rev. 01:2013. Determinación de Dióxido de Nitrógeno en aire (Método			
	del Arsenito de Sodio) (Validado).			

Fuente: Informe de ensayos MA1418066 y MA1418722 Laboratorio de Ensayo Acreditado Registro N° LE-002

Tabla 10. Métodos de ensayo utilizados para la medición de los parámetros de hidrobiología

El desarrollo del programa de monitoreo hidrobiológico se basa en los métodos utilizados y resultados obtenidos en el desarrollo de los ElAs, con algunas mejoras, metodológicas fundamentalmente, teniendo en cuenta avances recientes (posteriores al 2007) en cuanto al conocimiento de la biota acuática neotropical (y altoandina en particular) y que a continuación se detallan:

Tipo de muestreo	Descripción
Muestreo para fitoplancton	El fitoplancton fue muestreado en los ambientes acuáticos utilizando redes defitoplancton de una malla de 20 µm y filtrando un total de 40 litros de agua. La muestra fue preservada en formol al 5%
Muestreo para perifiton	El perifiton fue colectado en las estaciones ubicadas en ambientes lóticos (ríos y quebradas), considerando un área de muestreo de 25 cm2 (aproximación a un cuadrado de 5 x 5 cm de lado). La muestra fue preservada en formol al 5% para su posterior traslado al laboratorio.
Muestreo para macroinvertebrados bentónicos	En los ambientes lóticos, los macroinvertebrados bentónicos fueron colectados usando una red Surber de 30 x 30 cm de cada lado de colecta de colecta y con una apertura de malla de 250 μm.

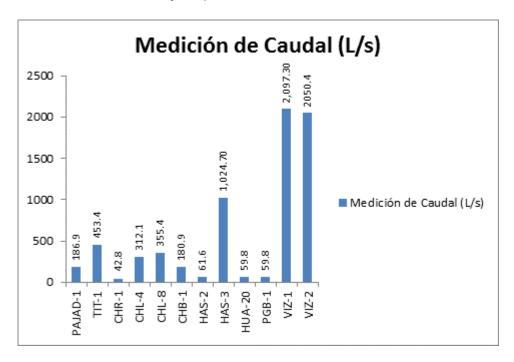
Variables fisicoquímicas

En cada estación de evaluación se midieron cuatro variables fisicoquímicas normalmente asociadas con el desarrollo de la comunidad biológica:

- pH
- Concentración de oxígeno disuelto
- Conductividad eléctrica
- Temperatura

6.2. Validación de línea de base ambiental:

Se validará la línea base comparando los resultados obtenidos en el monitoreo de diciembre del 2014 con la distribución de los datos de monitoreo generados por la empresa Anglo American y la información contenida en el EIA del Proyecto Quellaveco durante el periodo 1994 - 2013, con la finalidad de determinar la trazabilidad que tienen los datos de este monitoreo participativo y los de la línea base realizada por Quellaveco.


Los valores determinados para cada parámetro en una estación fueron comparados con el récord histórico de la línea base monitoreado por Anglo American utilizando los Diagramas de Cajas y Bigotes considerando el periodo en estudio.

7. RESULTADOS Y DISCUSIÓN

7.1. Monitoreo de la calidad del agua superficial – zona de abastecimiento

7.1.1. Determinación del caudal y la época de monitoreo

Gráfico 01. Variación espacial del caudal de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua - del MAP III Nov – Dic 2014

En el gráfico 01, los puntos de monitoreo de calidad de agua superficial en el área de abastecimiento sobre la cuenca del río Titire, se ubican el PAJAD-1 (río Pacchani) y el TIT-1 aguas abajo en el río Titire. Sobre la microcuenca del río Chilota se ubican los puntos CHR-1, CHL-4, CHL-8 y CHB-1 en el río Chilota. Sobre la microcuenca del Calasaya se ubican en las quebradas los puntos HAS-2, HAS-3 y en el río el punto HUA-20. Finalmente sobre la cuenca del río Vizcachas se localizan los puntos PGB-1 (salida del Proyecto Pasto Grande), VIZ-1 y VIZ-2.

Al revisar los históricos de todos los caudales del TIT-1 (1999-2014), CHL-8 (1996-2014), PGB-1 (2007-2014), VIZ-2 (1999-2014), se concluye que se trata de una época seca sin mayor influencia por lluvias.

7.1.2. Ubicación de los puntos de monitoreo

Figura 01. Ubicación de los puntos de monitoreo de agua superficial -área de abastecimiento- MAP III Nov - diciembre 2014.

7.1.3. Resultados de los Análisis químicos de laboratorio.

Tabla 11. Resultados de Análisis Químicos de laboratorio

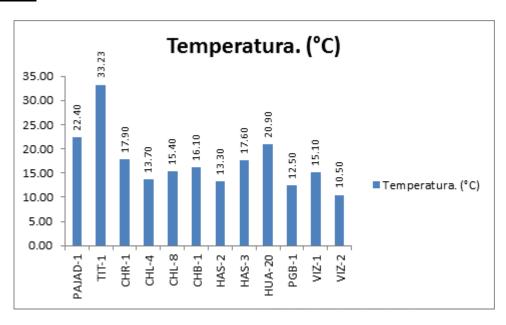
Tabla 11. Resultados					ECA Agua Categoría 3											
Parámetros	LD	TIT-1	PAJAD-01	CHB-01	VIZ-1	VIZ-2	CHL-8	CHL-4	PGB-01	HAS-3	HAS-2	HUA-20	CHR-1		RV Tallo alto	
Conductividad Eléctrica. (µS/cm)		12,980.00	749.00	163.30	514.00	689**	166.80	83.50	592.00	67.60	108.50	161.50	80.00	<2000	<2000	5000.00
Medición de Caudal (L/s)		453.400 *	186.900 *	180.900	2,097.300	2050.4**	355.400 *	312.100 *	59.800 *	1,024.700	61.600 *	59.800 *	42.800 *			
Oxígeno Disuelto. (mg/L)		5.64	8.87	6.44	6.16	6.62	6.07	6.72	5.92	5.1**	5.93**	6.88	6.86	>= 4	>=4	5
Potencial de Hidrógeno. (pH)	-	7.54	9.02	8.96	4.92	5.66	8.50	9.05	4.21	7.24	7.95	8.77	9.11	6.5-8.5	6.5-8.5	6.5-8.4
Temperatura. (°C)		33.23	22.40	16.10	15.10	10.50	15.40	13.70	12.50	17.60	13.30	20.90	17.90			
Numeración Coliformes totales (NMP/100 mL)		7.8	17	<1.8	4.5	2	33	23	<1.8	49	33	33	280	1000	2000	1000
Numeración de Coliformes fecales (NMP/100 mL)		4.5	13	<1.8	2	2	11	2	<1.8	<1.8	<1.8	13	49	5000	5000	5000
Aceites y Grasas (mg/L)	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1	1	1
Alcalinidad Total (mgCaCO3/L)	0.5	458.3	87.6	32.8	<0.5	1.6	33.3	22.5	<0.5	10.8	11.8	41.2	18.3			
Alcalinidad-Bicarbonato (mgCaCO3/L)	0.5	458.3	87.6	32.8	<0.5	1.6	33.3	22.5	<0.5	10.8	11.8	41.2	15.3	370.0	370.0	
Bicarbonatos (mg HCO3/L)	0.6	559.2	106.9	40.1	<0.6	2.0	40.6	27.4	<0.6	13.2	14.4	50.3	18.6	370.0	370.0	
Carbonatos (mg CO3/L)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	1.8	5	5	
Cianuro libre (mg/L)	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
Cianuro total (mg/L)	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
Cianuro WAD (mg/L)	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.1	0.1	0.1
Cromo Hexavalente Total (mg/L)	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.1	0.1	1
Demanda Bioquímica de Oxígeno (mg/L)	1.0	1.9	1.7	1.3	<1.0	<1.0	<1.0	<1.0	2.5	1.4	1.2	1.4	<1.0	15.0	15.0	15.0

					ECA Agua Categoría 3											
Parámetros	LD	TIT-1	PAJAD-01	CHB-01	VIZ-1	VIZ-2	CHL-8	CHL-4	PGB-01	HAS-3	HAS-2	HUA-20	CHR-1	RV Tallo bajo	RV Tallo alto	bebida de animales
Demanda Química de Oxígeno (mg/L)	3	27	5	4	5	7	5	7	8	7	4	5	6	40	40	40
Dureza Total (mgCaCO3/L)	0.5	926.7	403.1	35.7	102.9	85.7	36.7	22.9	108.0	18.7	33.5	38.3	19.5			
Fenoles (mg/L)	0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.001	0.001	0.001
Fósforo Reactivo Disuelto (mg/L)	0.005	0.170 *	0.023 *	0.014 *	0.014 *	0.014 *	0.014 *	0.013 *	0.018 *	0.037 *	0.089 *	0.033 *	0.067 *	1	1	
Fósforo Total (mg/L)	0.004	0.290	<0.004	0.009	0.009	0.009	0.009	0.009	0.006	0.054	0.013	0.034	0.034			
Nitrógeno Amoniacal (mg/L)	0.004	7.120	0.019	0.013	0.011	0.014	0.012	0.011	0.009	0.010	0.008	0.016	0.008			
S.A.A.M.(Detergentes) (mg/L)	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	1	1	1
Silicatos (Si-SiO3) (mg/L)	0.04	31.30	14.36	24.66	15.41	17.37	17.37	23.01	12.46	23.61	27.26	21.27	24.85			
Sólidos Totales Disueltos (mg/L)	1	8,275	655	118	395	316	127	61	395	51	92	121	67			
Sólidos Totales en Suspensión (mg/L)	1	10	2	31	1	14	15	<1	<1	2	<1	2	2			
Sulfuro (mg/L)	0.001	<0.001 *	<0.001 *	<0.001 *	<0.001 *	<0.001 *	<0.001 *	<0.001 *	<0.001 *	<0.001 *	<0.001 *	<0.001 *	<0.001 *	0.05	0.05	0.05
Bromuro (mg/L)	0.014	<0.014 *	<0.014 *	<0.014 *	<0.014 *	<0.014 *	<0.014 *	<0.014 *	<0.014 *	<0.014 *	<0.014 *	<0.014 *	<0.014 *			
Cloruro (mg/L)	0.025	4026.5	1.667	18.482	59.376	47.471	20.332	1.482	71.304	0.765	0.484	10.925	1.422	100-700	100-700	
Fluoruro (mg/L)	0.002	1.956	1.064	0.084	0.175	0.122	0.130	0.068	0.228	0.057	0.037	0.198	0.088	1.000	1.000	2.000
Nitrato (como N) (mg/L)	0.007	0.548	0.305	0.906	0.129	0.074	<0.007	<0.007	0.037	<0.007	0.137	<0.007	0.013	10	10	50
Nitrito (mg/L)	0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.06	0.06	1
Sulfato (mg/L)	0.01	178.72	931.73	18.94	136.42	104.34	19.10	16.33	151.20	19.13	31.26	23.98	17.85	300.00	300.00	500.00
Metales Totales																
Aluminio Total (mg/L)	0.02	0.65	0.08	1.72	4.83	3.26	0.57	<0.02	6.69	<0.02	<0.02	0.13	0.02	5.00	5.00	5.00
Antimonio Total (mg/L)	0.0008	0.0069	<0.0008	0.0016	<0.0008	<0.0008	0.0015	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008			
Arsénico Total (mg/L)	0.001	1.483	0.019	0.150	0.003	0.043	0.125	0.069	0.007	0.001	0.008	0.003	0.056	0.05	0.05	0.10
Bario Total (mg/L)	0.002	0.111	0.052	0.028	0.099	0.062	0.017	0.005	0.073	0.017	0.018	0.018	<0.002	0.700	0.700	

Berilio Total (mg/L)	0.0001	0.0003	<0.0001	<0.0001	0.0007	0.0005	<0.0001	<0.0001	0.0009	<0.0001	<0.0001	<0.0001	<0.0001			0.1		
5 / .						E	staciones de	Monitoreo						ECA Agua Categoría 3				
Parámetros	LD	TIT-1	PAJAD-01	CHB-01	VIZ-1	VIZ-2	CHL-8	CHL-4	PGB-01	HAS-3	HAS-2	HUA-20	CHR-1	RV Tallo bajo	RV Tallo alto	bebida de animales		
Bismuto Total (mg/L)	0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005					
Boro Total (mg/L)	0.01	46.15	0.25	0.22	1.24	0.93	0.27	0.04	1.49	0.02	0.02	0.13	0.03	0.5-6	0.5-6	5.00		
Cadmio Total (mg/L)	0.0002	0.0017	<0.0002	<0.0002	0.0035	0.0022	<0.0002	<0.0002	0.0036	<0.0002	<0.0002	<0.0002	<0.0002	0.005	0.005	0.01		
Calcio Total (mg/L)	0.003	240.995	113.862	11.180	30.223	24.025	11.551	5.771	26.512	4.795	8.373	10.353	4.919	200.000	200.000			
Cerio Total (mg/L)	0.00008	0.00161	<0.00008	0.00259	0.00647	0.00402	0.00094	0.00008	0.00690	<0.00008	<0.00008	0.00028	<0.00008					
Cesio Total (mg/L)	0.0001	2.0533	0.0012	0.0148	0.0398	0.0276	0.0116	0.0066	0.0441	0.0002	0.0018	0.0001	0.0067					
Cobalto Total (mg/L)	0.00007	0.00956	<0.00007	0.00111	0.02777	0.01773	0.00043	0.00008	0.02611	<0.00007	<0.00007	0.00080	<0.00007	0.05	0.05	1		
Cobre Total (mg/L)	0.001	0.019	0.002	0.006	0.015	0.009	0.002	<0.001	0.016	<0.001	<0.001	0.003	<0.001	0.2	0.2	0.5		
Cromo Total (mg/L)	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002					
Estaño Total (mg/L)	0.0014	<0.0014	0.0058	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014					
Estroncio Total (mg/L)	0.0003	9.7702	1.6477	0.1593	0.3416	0.2416	0.1530	0.0428	0.2935	0.0461	0.0716	0.0844	0.0361					
Fósforo Total (mg/L)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2					
Galio Total (mg/L)	0.00004	0.00017	0.00015	0.00046	0.00025	0.00021	0.00008	<0.00004	0.00056	<0.00004	<0.00004	<0.00004	<0.00004					
Germanio Total (mg/L)	0.0002	0.0100	<0.0002	0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002					
Hafnio Total (mg/L)	0.00005	<0.00005	0.00014	0.00007	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005					
Hierro Total (mg/L)	0.001	1.444	0.097	2.595	0.299	0.457	0.941	0.357	0.986	0.339	0.017	0.655	0.393	1.000	1.000	1.000		
Lantano Total (mg/L)	0.0005	0.0008	<0.0005	0.0013	0.0033	0.0020	<0.0005	<0.0005	0.0029	<0.0005	<0.0005	<0.0005	<0.0005					
Litio Total (mg/L)	0.0009	8.7886	0.0434	0.0279	0.3133	0.2167	0.0309	0.0081	0.4115	0.0012	0.0017	0.0052	0.0073	2.5000	2.5000	2.5000		
Lutecio Total (mg/L)	0.00002	<0.00002	<0.00002	<0.00002	0.00004	0.00002	<0.00002	<0.00002	0.00004	<0.00002	<0.00002	<0.00002	<0.00002					
Magnesio Total (mg/L)	0.001	67.613	26.213	2.827	10.119	7.170	2.760	2.140	7.916	1.453	2.796	4.700	2.261	150.000	150.000	150.000		
Manganeso Total (mg/L)	0.0006	1.2080	0.0253	0.0802	2.3302	1.4455	0.0458	0.0100	1.9577	0.0064	<0.0006	0.0431	0.0078	0.2000	0.2000	0.2000		
Mercurio Total (mg/L)	0.00003	<0.00003	<0.00003	<0.00003	<0.00003	<0.00003	<0.00003	<0.00003	<0.00003	<0.00003	<0.00003	<0.00003	<0.00003	0.001	0.001	0.001		
Molibdeno Total (mg/L)	0.00014	0.00317	0.00327	0.00218	0.00015	0.00057	0.00218	0.00076	<0.00014	0.00023	0.00031	0.00083	0.00040					
Niobio Total (mg/L)	0.0005	<0.0005	0.0009	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005					

Informe de resultados – época seca - MAP III

Niquel Total (mg/L)	0.0004	0.0092	0.0011	0.0010	0.0290	0.0176	0.0005	<0.0004	0.0261	<0.0004	<0.0004	0.0021	<0.0004	0.2	0.2	0.2			
Plata Total (mg/L)	0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.05	0.05	0.05			
			Estaciones de Monitoreo													ECA Agua Categoría 3			
Parámetros	LD	TIT-1	PAJAD-01	CHB-01	VIZ-1	VIZ-2	CHL-8	CHL-4	PGB-01	HAS-3	HAS-2	HUA-20	CHR-1		RV Tallo alto	bebida de animales			
Plomo Total (mg/L)	0.0003	<0.0003	<0.0003	0.0010	0.0033	0.0020	<0.0003	<0.0003	0.0105	<0.0003	<0.0003	<0.0003	<0.0003	0.05	0.05				
Potasio Total (mg/L)	0.2	158.7	6.7	3.8	13.3	9.6	3.7	3.0	12.1	2.5	3.9	7.6	3.3	0.00	0.00				
Rubidio Total (mg/L)	0.0003	1.1496	0.0110	0.0150	0.0545	0.0382	0.0127	0.0094	0.0554	0.0078	0.0138	0.0126	0.0098						
Selenio Total (mg/L)	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002						
,														0.05	0.05				
Silicio Total (mg/L)	0.04	30.37	20.80	29.92	17.78	19.74	28.12	25.75	12.21	23.16	25.35	20.39	23.44						
Sodio Total (mg/L)	0.02	2,571.71	41.18	21.25	64.75	47.89	22.28	8.88	52.64	4.65	5.79	21.27	8.66			200.00			
Talio Total (mg/L)	0.00003	0.00121	0.00006	0.00008	0.00044	0.00026	<0.00003	<0.00003	0.00048	0.00003	0.00003	<0.00003	<0.00003						
Tantalio Total (mg/L)	0.0007	<0.0007	<0.0007	<0.0007	<0.0007	<0.0007	<0.0007	<0.0007	<0.0007	<0.0007	<0.0007	<0.0007	<0.0007						
Teluro Total (mg/L)	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001						
Thorio Total (mg/L)	0.00006	<0.00006	0.00097	0.00040	<0.00006	<0.00006	0.00011	<0.00006	<0.00006	<0.00006	<0.00006	<0.00006	<0.00006						
Titanio Total (mg/L)	0.01	<0.01	<0.01	0.10	<0.01	<0.01	0.04	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01						
Uranio Total (mg/L)	0.00004	0.00066	0.00089	0.00012	0.00011	0.00008	0.00006	<0.00004	0.00013	<0.00004	<0.00004	<0.00004	<0.00004						
Vanadio Total (mg/L)	0.002	<0.002	0.004	0.010	<0.002	<0.002	0.006	0.004	<0.002	0.004	0.005	0.003	0.006						
Wolframio Total (mg/L)	0.0002	0.0002	0.0015	0.0003	<0.0002	<0.0002	0.0003	0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002						
Yterbio Total (mg/L)	0.00002	0.00010	<0.00002	0.00007	0.00026	0.00016	<0.00002	<0.00002	0.00026	<0.00002	<0.00002	<0.00002	<0.00002						
Zinc Total (mg/L)	0.0008	0.0947	0.0016	0.0079	0.3033	0.2002	0.0033	<0.0008	0.2671	0.0015	0.0013	0.0031	0.0018	2.0000	2.0000	24.0000			
Zirconio Total (mg/L)	0.00015	<0.00015	0.00019	0.00235	<0.00015	<0.00015	0.00075	<0.00015	<0.00015	<0.00015	<0.00015	0.00021	<0.00015						

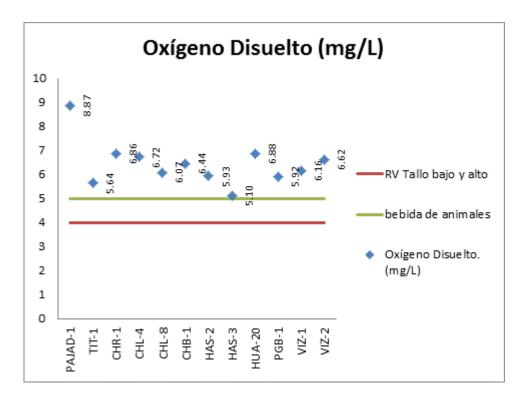

** Valor excede el ECA Agua Categoría 3
Informes OP1406727, OP1406833, MA 1418268

El método no ha sido acreditado ante Indecopi

7.1.4. Interpretación de los Resultados de Laboratorio

Temperatura

Gráfico 02. Variación espacial de la temperatura de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III Nov – Dic 2014


Nuestro Estándar Nacional de Calidad de Agua no fija un valor para este parámetro, este parámetro depende de la altura, la hora de muestreo, del condiciones del tiempo, estación del año, entre otros. Se recomienda monitorear la temperatura como parámetro referencial, que permite explicar el comportamiento de otros parámetros.

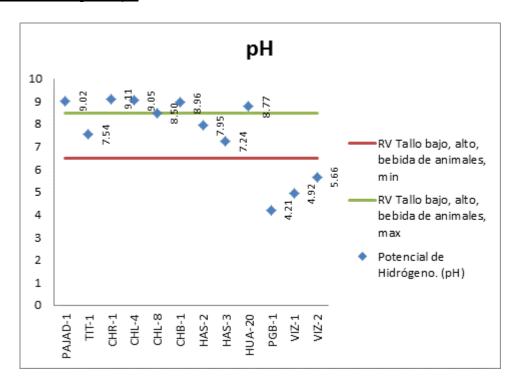
Como se observa en el gráfico 02, la temperatura del agua en los puntos de monitoreo correspondientes a la cuenca del Titire son valores altos, al revisar la información histórica del TIT-1 se observa que entre los meses de noviembre y diciembre tiene valores altos, debido al bajo caudal, la formación de la playa que aumenta la superficie del agua expuesta al sol y el incremento de la temperatura ambiental.

Los otros puntos de monitoreo presentan aguas con temperatura correspondiente a la altura y estación del año.

Oxígeno Disuelto

Gráfico 03. Variación espacial del contenido de oxígeno disuelto de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014

El contenido de oxígeno disuelto en el agua es un parámetro importante para el mantenimiento de la vida acuática, los peces no pueden habitar en cuerpos de agua con menos de 5 mgO₂/L.

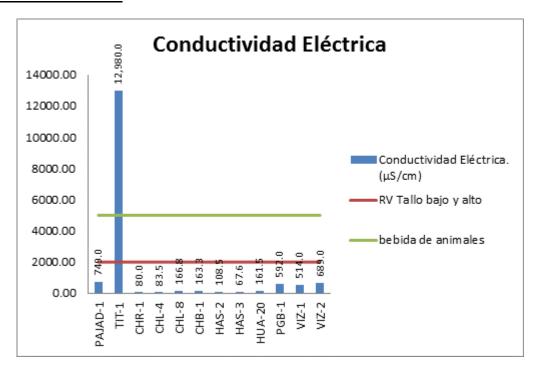

El ingreso de oxígeno en el agua es de la atmósfera hacia el agua, cuando el cuerpo de agua está en movimiento se favorece el ingreso más que cuando el agua está estancada o tiene poco movimiento, a nivel del mar y 20 °C la cantidad promedio de oxígeno disuelto en un cuerpo de agua natural ventilado es aproximadamente 8.0 mgO₂/L. El ECA Agua Categoría 3 riego de vegetales exige un valor mínimo 4 mg O₂/L y en el caso de bebida de animales, como mínimo 5 mg O₂/L. El contenido de oxígeno disuelto en el agua puede disminuir por presencia de materia orgánica, sustancias susceptibles de oxidación, entre otros parámetros.

Como se observa en el gráfico 03 el contenido de oxígeno disuelto en el agua de las estaciones de aguas superficiales de todas las estaciones de monitoreo presentan agua con valores superiores al límite mínimo sugerido por el ECA Agua categoría 3 para riego de vegetales y bebida de animales. Estos valores altos se justifican por el constante movimiento de las masas de agua que favorece el ingreso del oxígeno desde el aire.

Potencial de Hidrógeno - pH

Gráfico 04. Variación espacial del valor del pH de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014.

El pH del agua es un parámetro monitoreado en campo que nos indica la presencia de iones hidronio en el agua, su rango va entre 0 a 14; las aguas naturales dependiendo de su contenido de sales disueltas pueden ser ligeramente ácidas o alcalinas. El ECA Agua Categoría 3 nos sugiere que el pH de agua naturales, debe ser como mínimo 6.5 y como máximo 8.5. El pH del agua se relaciona con la alcalinidad total (presencia de bicarbonato) y acidez (ácidos inorgánicos u orgánicos, metales como el Fe³+ y el Al³+, entre otros) de un cuerpo de agua.

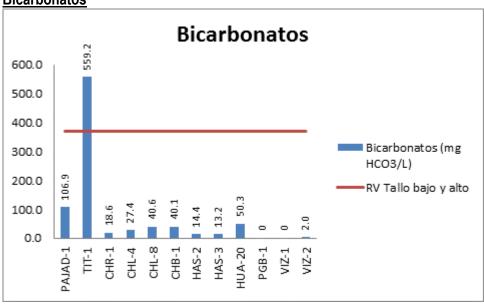

Como se observa en el gráfico 04, los valores del pH de los puntos de monitoreo ubicados sobre el río Vizcachas presentan valores bajos desde la parte alta PGB-1 (4.21) hasta la parte baja VIZ-1 (4.92) Y VIZ-2 (5.66), lo que nos indica una neutralización del cuerpo de agua por ingreso de aguas de los ríos Chilota CHB-1 (8.91) y Calasaya HUA-20 (8.77).

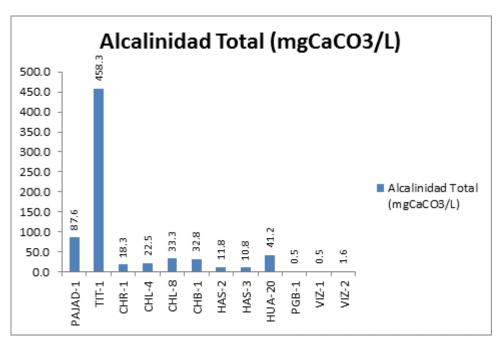
Los valores bajos del pH en las estaciones del río Vizcachas PGB-1, VIZ-1 y VIZ- 2, están directamente asociados con bajas del caudal e incremento de las concentraciones de Aluminio, Manganeso y Sulfatos en el agua, desaparición de la alcalinidad total, esto sucede con cierta frecuencia entre los meses de octubre y diciembre, lo que sugiere una fuente intermitente de ingreso de aluminio como se verifica en la información histórica del VIZ-2 y PGB-1.

Los valores altos del pH en las estaciones del río Chilota CHR-1, CHL-4, CHL-8 y CHB-1, se relacionan con valores moderados de alcalinidad total, como se puede verificar en la información histórica del punto CHL-08.

Conductividad Eléctrica

Gráfico 05. Variación espacial del valor de la conductividad de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua - del MAP III nov – dic 2014.

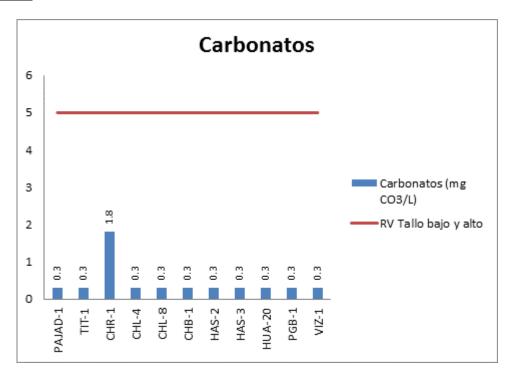

La conductividad eléctrica, es la propiedad por la cual el agua natural que contiene sales disueltas puede conducir corriente eléctrica, representa la cantidad de sales o sólidos disueltos que están presentes en el agua, estas sales incluyen cationes como los metales disueltos, siendo los más relacionados con la conductividad los iones sodio, potasio, calcio y magnesio, los otros metales no tienen una buena correlación debido a su distribución entre disuelto y suspendido. Por otro lado se tiene a los aniones siendo los principales los cloruros, bicarbonatos y sulfatos.


El riego con aguas que contiene elevados valores de conductividad puede degradar la calidad del suelo por salinización y el consumo como agua de bebida puede ocasionar problemas renales entre los consumidores. El Estándar de calidad de agua Categoría 3 riego de vegetales contempla un valor máximo de 2000 uS/cm y para el caso de bebida de animales se contempla una valor de 5000 uS/cm.

Como se observa en el gráfico 06 los valores de conductividad de casi todas las estaciones de monitoreo cumple con lo establecido en el ECA Agua Categoría 3 riego de vegetales y bebida de animales. El agua de la estación TIT-1 presenta valores extremadamente altos de conductividad (12980 uS/cm), esta situación se ha presentado en forma frecuente en la calidad del agua del río Titire entre los meses de setiembre y diciembre, demostrando el ingreso temporal de una fuente de origen termal en el agua.

Bicarbonatos

Gráfico 06 y 07. Variación espacial del valor del contenido de bicarbonato y alcalinidad total de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de aguadel MAP III nov – dic 2014.

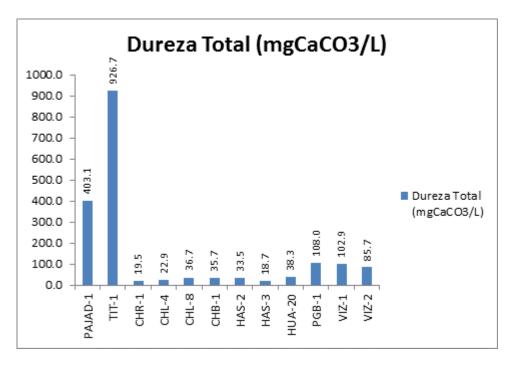

Las principales fuentes de bicarbonato en el agua son la disolución del dióxido de carbono del aire, posterior disociación del ácido carbónico formado, y disolución de material de suelo carbonatado.

El bicarbonato es el principal responsable de la alcalinidad del agua, tiene la capacidad para neutralizar la acidez del agua provocada por ácidos inorgánicos, orgánicos, iones hidronio y metales disueltos generadores de acidez tales como Al³⁺ y Fe³⁺. El Estándar de calidad de agua ECA Agua Categoría 3 para agua de riego de vegetales es 370 mg CaCO₃/L.

y Pronaturaleza

Como se observa en los gráficos 06 y 07, la calidad del agua de la estación de monitoreo PAJAD-1 y TIT-1, presentan valores moderado (87.6 mg/L) y alto de alcalinidad (458 mg/L), esto nos indica el ingreso de una fuente de bicarbonatos al río Titire. En el caso de la cuenca del río Vizcacha los bajos valores de pH están asociados a los bajos valores de bicarbonatos y alcalinidad total, debido a que la presencia de Al3+ es neutralizada por los bicarbonatos.

Carbonatos


Gráfico 08. Variación espacial del valor del contenido de carbonato de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III Nov – Dic 2014.

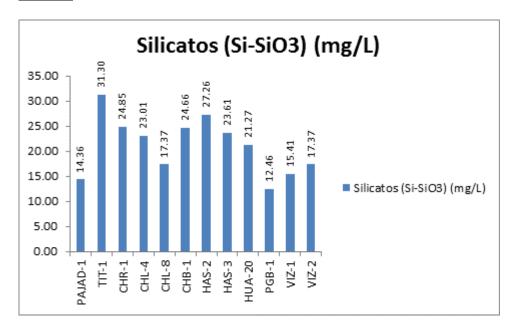
Los carbonatos son una de las especies carbonatadas importantes en el agua, las principales fuentes son el dióxido de carbono que se introduce en el agua desde el aire, forma el ácido carbónico, este se disocia y dependiendo del pH puede formar bicarbonato o carbonato. A valores ligeramente altos pH > 8, se forma carbonato preferentemente. La otra fuente importante de carbonatos es la disolución del material de suelo carbonatado. El ECA agua categoría 3 fija un valor de 5 mg CaCO₃/L para agua de riego, debido a que la presencia de carbonatos en el agua riego ocasiona problemas de salinización del suelo.

Como se observa en el gráfico 08, las aguas de la estación CHR-1 presentan un contenido significativo de carbonato, esto se asocia al valor alto de pH = 9.11, en general el río chilota posiblemente atraviesa suelos carbonatados o está influenciado por las aguas termales de la pampa chilota.

Dureza

Gráfico 09. Variación espacial del valor de la dureza de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III Nov – Dic 2014.

La presencia de cationes polivalentes, principalmente los cationes de calcio y de magnesio dan origen a la dureza de las aguas.


No se ha encontrado ninguna correlación entre las aguas de alto contenido de dureza y daños al organismo. Los problemas más bien son de tipo doméstico e industrial: la dureza impide la formación de espuma causando mayor consumo de jabón y detergentes cuando se les emplea en operaciones de lavado doméstico; por otra parte, está ligada a otros parámetros como el pH y la alcalinidad, y dependiendo de ellos, puede formar depósitos en las tuberías, obstruyéndolas completamente. El ECA Agua categoría 3 no fija un límite para la dureza.

En términos generales, se puede considerar como blanda un agua con menos de 100 mg CaCO3/L de dureza como CaCO3, medianamente dura de 100 a 200 mg CaCO3/L, dura de 200 a 300 mg CaCO3/L, sin que tenga necesariamente que ser ablandada para servir a una comunidad con fines domésticos, muy dura para valores mayores a 300 mg CaCO3/L.

Como se observa en el gráfico 09, la dureza en la cuenca del río Titire se incrementa, conjuntamente con el contenido de Calcio y Magnesio, por lo tanto la dureza de las aguas del río Titire son duras.

Silicatos

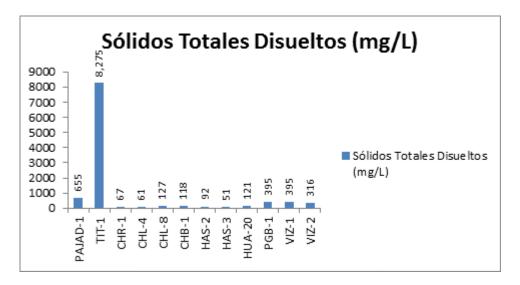
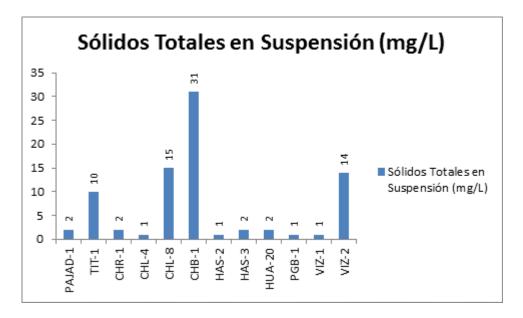


Gráfico 10. Variación espacial del contenido de silicatos de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014.

Como se observa en el gráfico 10 el contenido de silicatos en todos los puntos de monitoreo son valores bajos, esto se asocia a los bajos valores de los sólidos suspendidos totales, característico de épocas secas. El ECA Agua categoría 3 no fija un valor límite para el contenido de silicatos siendo este parámetro de medición referencial, que explica el ingreso de material de suelo al agua en épocas de lluvia.

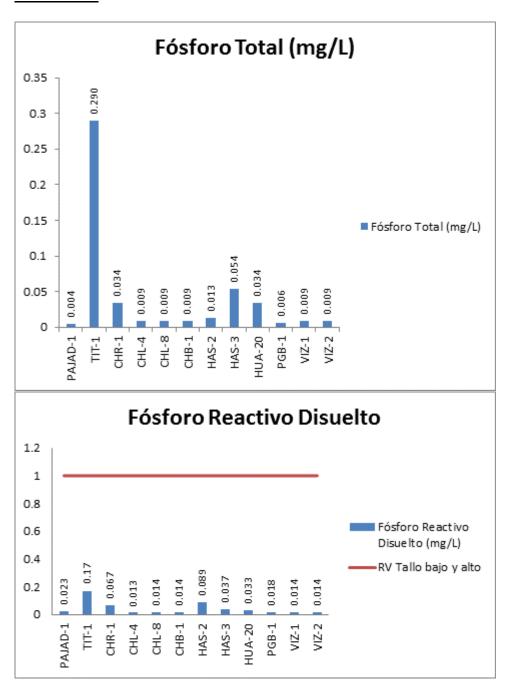
Sólidos Totales Disueltos


Gráfico 11. Variación espacial del contenido de sólidos totales disueltos de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014.

Los sólidos totales disueltos, representa a todas las sales disueltas, formadas por cationes metálicos disueltos como los de Na, K, Ca, Mg y otros metales disueltos, no tiene buena relación con los metales totales debido a que estos por lo general se encuentran adsorbidos. También está formado por aniones disueltos como los cloruros, fluoruros, carbonatos, bicarbonatos, sulfatos entre otros. La principal fuente son las sales que se encuentran en el lecho del río y que se disuelven en el agua. En época seca, solo la disolución de los iones del lecho es importante, pero en época de lluvia los iones disueltos pueden provenir del suelo y llegar disueltos en las escorrentías juntamente con los sólidos suspendidos. El ECA Agua Categoría 3 no contempla valores límites para este parámetro.

Como se observa en el gráfico 11, la calidad del agua del TIT-1 presenta valores altos de sólidos disueltos totales (8275 mg/L), esto se relaciona con el valor alto de conductividad (12980 uS/cm), aniones como los cloruros y cationes como Litio, Sodio, Magnesio y Potasio, esto nos indica el ingreso de una fuente de agua termal o mineral.

Sólidos Totales en Suspensión

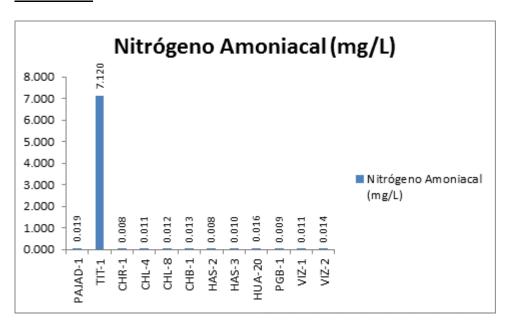

Gráfico 12. Variación espacial del contenido de sólidos totales en suspensión de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014.

Los sólidos totales en suspensión, son sólidos que permanecen en la columna del cuerpo de agua en el tiempo, son responsables del color y de la turbiedad, los microorganismos patógenos en más del 90 % se encuentran adheridos a este tipo de sólidos, por esta razón es importante su remoción antes de su uso. En época seca la cantidad de sólidos totales en suspensión es baja, pero en épocas de lluvia la acción de las lluvias genera escorrentías que arrastran material del suelo y todo lo que se encuentre sobre este al agua, generando valores significativamente mayores de sólidos totales en suspensión que en la época seca. El ECA Agua Categoría 3 no contempla un valor límite para este parámetro.

En el gráfico 12 se observa que la calidad del agua de todas las estaciones, presentan valores por debajo de 31 mg/L, estos valores bajos son frecuentes en época seca.

Fósforo Total

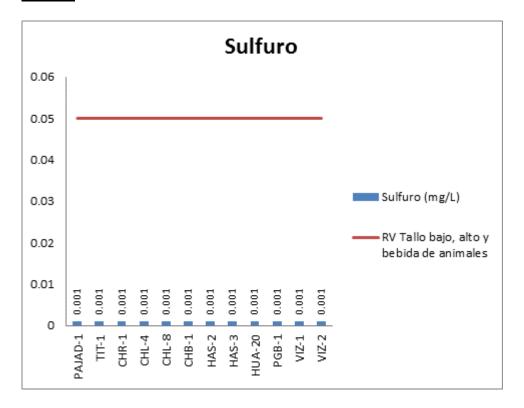
Gráfico 13 y 14. Variación espacial del contenido de fósforo total y fósforo reactivo total de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de aguadel MAP III nov – dic 2014.


Las principales fuentes de fósforo en el agua son material parental roca fosfórica, vertimiento de aguas residuales que contienen excretas y residuos de detergentes.

El fósforo, es nutriente esencial para la vida; sin embargo su exceso en el agua provoca el proceso de eutrofización. El fósforo total incluye distintos compuestos como ortofosfatos, polifosfatos y fósforo orgánico.

La presencia de algas en muchas de las estaciones está relacionada con los contenidos de fósforo total en el agua.

N-amoniacal

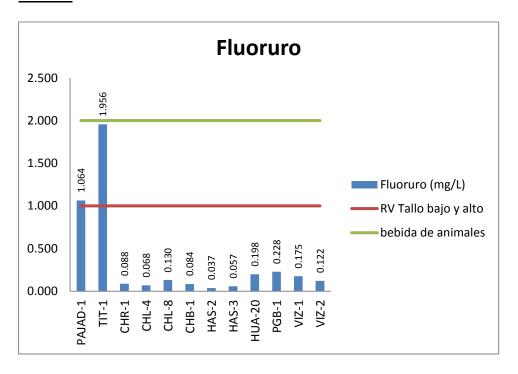

Gráfico 15. Variación espacial del contenido de nitrógeno amoniacal de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014.

El nitrógeno amoniacal es el nitrógeno que se forma luego de la degradación de la materia orgánica nitrogenada como los péptidos, proteínas y aminoácidos, producen mal olor. El ECA Agua categoría 3 no fija un límite para este parámetro.

Como se observa el gráfico 15, el TIT-1 presenta valores significativos Nitrógeno Amoniacal y fósforo total lo que indica presencia de material orgánico en proceso de degradación.

Sulfuros

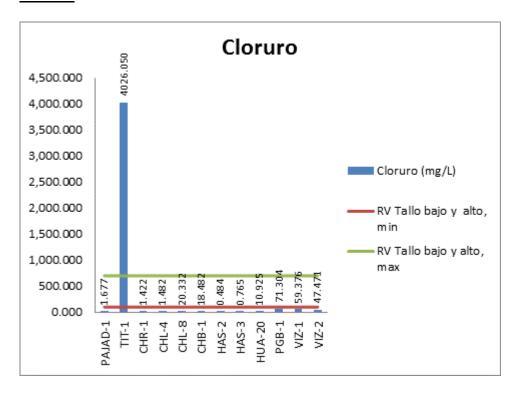
Gráfico 16. Variación espacial del contenido de sulfuros de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014.


Los sulfuros en la corteza terrestre están asociados con los metales, se encuentran a menudo en el agua subterránea, especialmente en manantiales calientes. Su presencia común en las aguas residuales se debe en parte a la descomposición de la materia orgánica, presente a veces en los residuos industriales, pero procedente casi siempre de la reducción bacteriana de los sulfatos.

La concentración umbral para H₂S en agua limpia está comprendida entre 0.025 y 0.25 mg/l. El H₂S ataca directa e indirectamente a los metales y ha producido corrosiones graves en las conducciones de cemento por oxidarse biológicamente a H₂SO₄ en las paredes de las tuberías.

El ECA agua categoría 3 fija un valor de 0.05 mg/L, en el gráfico 16 no se detecta la presencia de sulfuros en ninguna de las estaciones.

Fluoruro

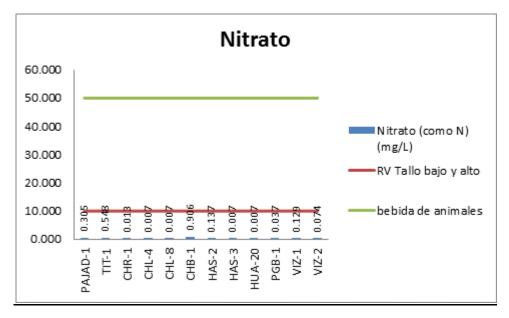

Gráfico 17. Variación espacial del contenido de fluoruros de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014.

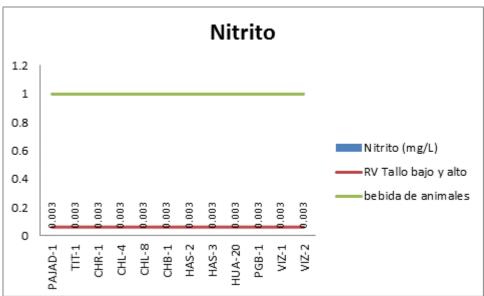
El flúor es una sustancia que previene la caries a una concentración aproximada de 1 mg/L sin ocasionar efectos a la salud, Moquegua es el departamento con menor índice de caries en el Perú, la principal fuente de flúor es ceniza volcánica o material volcánico en general. El exceso de flúor en el agua puede ser responsable de la deformación de los huesos, enfermedad conocida como fluorosis ósea. El ECA Agua categoría 3 para riego de vegetales fija el valor en 1 mg/L.

Se observa en el gráfico 17, que el río Titire en la estación de monitoreo TIT-1 (1.956 mg/L), supera los valores establecidos por el ECA Agua Categoría 3 riego de vegetales, como se explicó esto se debe a la influencia de actividad de aguas mineralizadas o termales, este valor alto no es frecuente en el agua del río Titire. En el caso del PAJAD-1, sucede algo parecido pero con menor intensidad.

Cloruros

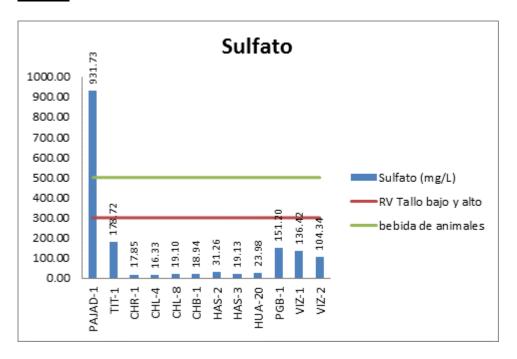
Gráfico 18. Variación espacial del contenido de cloruros de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014.


Los cloruros se encuentran en los suelos de Moquegua juntamente con los aluminosilicatos y sulfatos, se encuentra asociado al ion sodio, sólidos disueltos totales y la conductividad, estas sales de cloruro de sodio tienen origen marino o geológico. El ECA Agua categoría 3, fija un valor máximo de 700 mg/L.


Los cloruros en la estación TIT-1 son elevados esto se correlaciona con el valor de la conductividad y la presencia de iones metálicos y otros aniones.

En las demás estaciones los valores de conductividad están por debajo de lo establecido por el ECA.

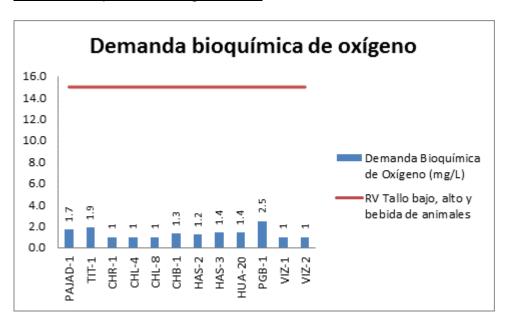
Nitratos


Gráfico 19 y 20. Variación espacial del contenido de nitratos y nitritos de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento del MAP III nov – dic 2014.

Los nitratos son nutrientes de las plantas, las principales fuentes de nitratos en el agua son aguas residuales domésticas y fertilizantes. El ECA Agua Categoría 3 fija valores para agua de bebida de animales de 10 mg/L y para riego 50 mg/L. Para bebida el exceso de nitratos puede ocasionar problemas de metahemoglobinemia, problemas con la oxigenación de animales o personas, para el caso de riego el exceso puede ocasionar problemas de salinización de suelos.

Como se observa los gráficos 19 y 20, el contenido de nitratos es bajo en la cuenca del Titire, Chilota, Calasaya y Vizcachas, indicando baja actividad antropogénica en la zona, el contenido de nitritos no ha sido detectado; lo que quiere decir que existe en cantidades mínimas.

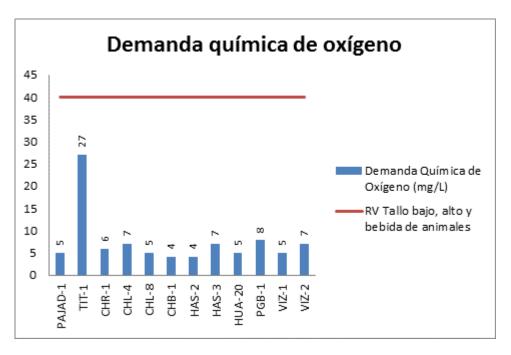
Sulfatos


Gráfico 21. Variación espacial del contenido de sulfatos de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014.

Los sulfatos en el agua son de origen geológico, según el estudio hidrológico del valle de Moquegua e llo realizado por el INRENA Jun-2004 se encontró que las aguas son de naturaleza sulfatada o bicarbonatada cálcica, siendo la presencia de los sulfatos significativa. El ECA Agua Categoría 3 para riego de vegetales es 300 mg/L y para bebida de animales es 500 mg/L.

Se observa en el gráfico 21, que el contenido de sulfatos en el agua de la estación de monitoreo PAJAD-1 excede el ECA Agua.

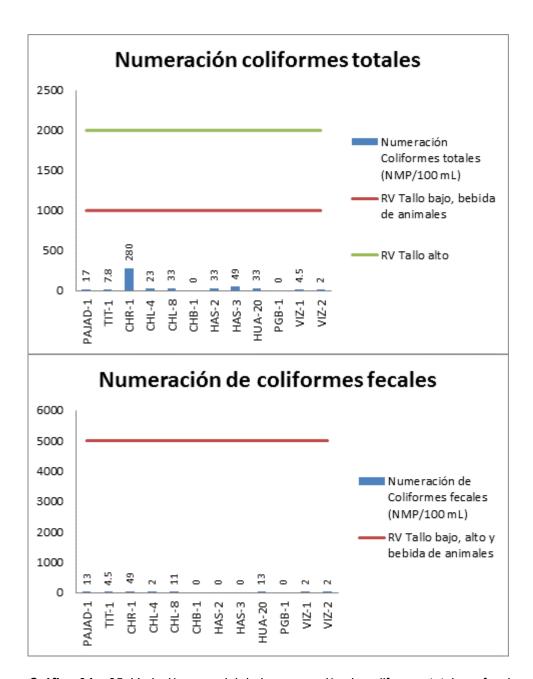
Demanda Bioquímica de Oxígeno DBO5


Gráfico 22. Variación espacial de la demanda bioquímica de oxígeno de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III Nov – Dic 2014.

La demanda bioquímica de oxígeno es un parámetro que se relaciona con el ingreso de material orgánico biodegradable, las principales fuentes de DBO en el agua son las descargas de aguas residuales de origen doméstico, proveniente de inodoros o cocina. El incremento del DBO se relaciona negativamente con el contenido de oxígeno disuelto. La materia orgánica al biodegradarse en presencia de microorganismos consume oxígeno disuelto. Los cuerpos de agua tienen la capacidad de auto recuperarse luego de una descarga con alto DBO, debido a que cuando la materia orgánica del vertimiento que se ha degradado, por procesos de difusión del oxígeno del aire hacia el agua permite que el agua recupere su contenido inicial de oxígeno disuelto. El ECA Categoría 3 riego de vegetales, fija un valor máximo de DBO₅ de 15 mg O₂/L.

Como se observa en el gráfico 22, el contenido de DBO5 en el agua en todas las estaciones de monitoreo presenta valores por debajo de lo contemplado en el ECA, esto indica que no existe ingreso de aguas residuales con materia orgánica.

Demanda Química de Oxígeno - DQO


Gráfica 23. Variación espacial de la demanda química de oxígeno de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014.

La demanda química de oxígeno representa a todo material orgánico biodegradable, no biodegradable y sustancias químicas susceptibles de oxidación, que consumen oxígeno en el agua al oxidarse químicamente. Las principales fuentes de DQO en el agua son la materia orgánica de las aguas residuales domésticas (excretas de inodoros, restos de comida), también detergentes, aceites y grasas que no se degradan fácilmente, material orgánico nitrogenado entre otros. El ECA Agua categoría 3, contempla un valor máximo de DQO de $40 \text{ mg } O_2/L$.

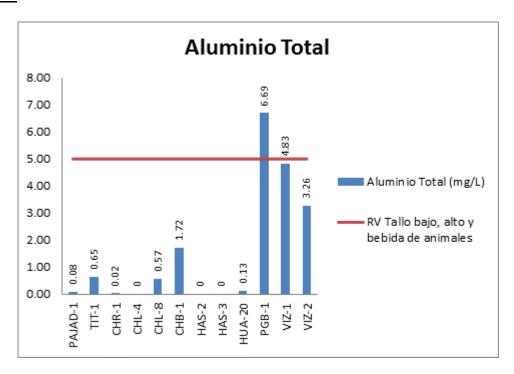
Como se observa en el gráfico 23, solo la estación TIT-1 presenta un valor alto del DQO, se relaciona con material susceptible de oxidación, tales como aniones cloruros y algunos cationes.

Coliformes Fecales y totales

Gráfico 24 y 25. Variación espacial de la numeración de coliformes totales y fecales de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014.

La presencia de coliformes fecales y totales en los cuerpos de agua son indicativos de la presencia de excretas de animales y humanos en el cuerpo de agua, en el caso de los coliformes fecales o termotolerantes, estos son bacterias que se encuentran en el intestino de los humanos y animales de sangre caliente. Los coliformes totales incluyen a los fecales y a otros que no se encuentran en el intestino de humanos o animales de sangre caliente. La principal especie de coliformes es la escherichia coli. Las fuentes más importantes de coliformes fecales y totales en el agua son los vertimientos de aguas residuales domésticas, excretas que son arrastradas por escorrentía al agua, filtraciones de pozos sépticos entre otros.

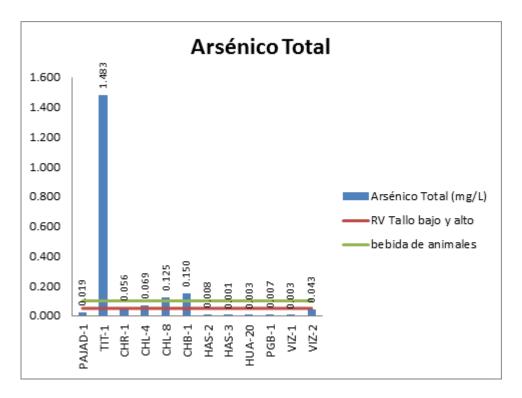
IL, para


El ECA Agua Categoría 3 para bebida de animales contempla un valor de 1000 NMP/100 mL, para riego de vegetales un valor de 2000 NMP/100 mL, para coliformes fecales y 5000 NMP/100 mL para coliformes totales.

Como se observa en los gráficos 24 y 25, la calidad del agua en la zona de abastecimiento en todos los puntos de monitoreo presenta, pero mínimamente, ingreso de coliformes totales o fecales.

METALES

Aluminio


Gráfico 26. Variación espacial del contenido de aluminio de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014.

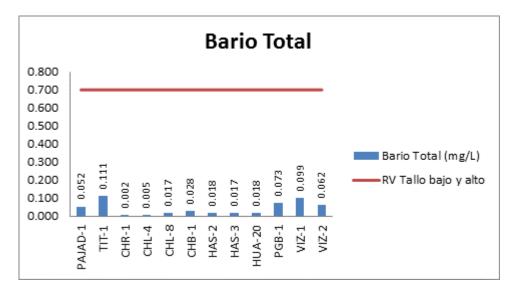
El aluminio es el tercer elemento más abundante en el planeta aproximadamente 8.07 %, la presencia de este elemento en suelos es importante y frecuente. El aluminio es un elemento capaz de liberar iones hidronio en el agua cuando esta disuelto y por lo tanto baja el valor del pH. El ECA Agua categoría 3, fija una valor de 5 mg/L.

Como se observa en el gráfico 26, la cuenca del río Vizcachas presenta contenidos altos de alumino provenientes de la presa Pasto Grande. La estación PGB-1 (6.69 mg Al/L) presenta aguas con contenidos altos de Aluminio que supera el ECA Agua, especialmente los tres últimos meses del año. En las estaciones aguas abajo como VIZ-1 (4.18 mg Al/L) y VIZ-2 (3.26 mg Al/L) el contenido de aluminio se va diluyendo alcanzando valores por debajo de lo sugerido por el ECA Agua.

Arsénico

Gráfico 27. Variación espacial del contenido de arsénico de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014.

El arsénico es un metaloide asociado con la presencia de oro y plata, se detecta en aguas de naturaleza termal.

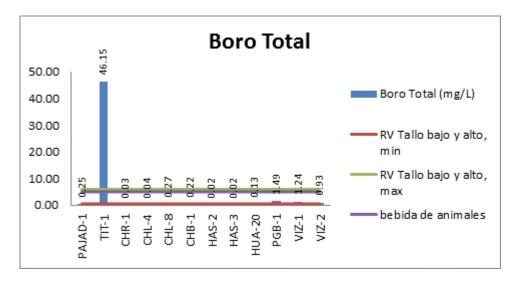

Como se observa en el gráfico 27, el río Titire en la estación de monitoreo TIT-1 presenta valores que exceden el ECA Agua (0.05 mg As/L), la principal fuente de arsénico en esta zona proviene del ingreso de aguas termales.

La calidad del agua en la cuenca del Chilota CHR-1, CHL-4, CHL-8, CHB-1, presenta valores que exceden el ECA Agua provenientes de manantial de aguas termales.

En la cuenca del río Vizcachas, se observa que el VIZ-2 presenta concentraciones de Arsénico cercanos al ECA Agua esto es debido a la influencia del río Chilota.

Bario

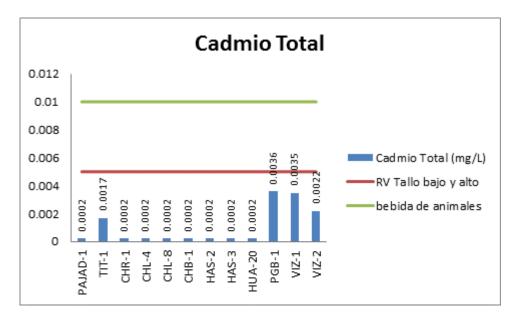
Gráfico 28. Variación espacial del contenido de bario de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014.


Como se observa en el gráfico 28, el contenido de bario está por debajo de lo establecido por el ECA Agua Categoría 3 de 0,7 mg/L. El ingreso de bario en el río Titire en la estación TIT-2 es debido al ingreso de aguas termales.

En el río Vizcachas se observa también el ingreso de aguas termales antes del VIZ-1 y dilución después del ingreso del río Chilota en la estación VIZ-2.

Los ríos Chilota y Calasaya no presentan valores significativos de bario.

Boro


Gráfico 29. Variación espacial del contenido de boro de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014.

El boro es esencial para el crecimiento de las plantas siendo sumamente tóxico en concentraciones por arriba del óptimo. Como se observa en el gráfico 29, el contenido de Boro en el río Titire en la estación TIT-1 presenta valores altos de Boro (46.15 mg B/L), por el ingreso de aguas de naturaleza termal.

Por otro lado el río Vizcachas desde el embalse Pasto Grande, se detecta presencia de boro PGB-1 (1.49 mg B/L), que luego aguas abajo se va diluyendo.

Cadmio

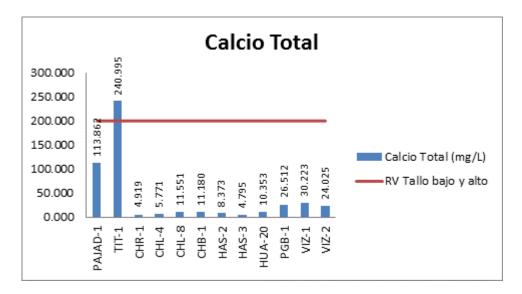
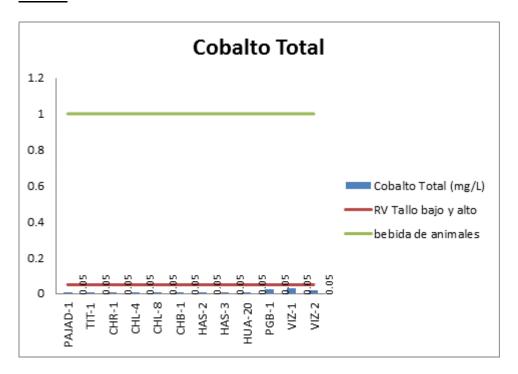


Gráfico 30. Variación espacial del contenido de cadmio de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014.

El cadmio es un elemento metálico pesado catalogado como tóxico, el ECA Agua categoría 3 establece como máximo un valor de 0.005 mg Cd/L, como se puede observar en el gráfico 30, la cuenca del río Vizcachas es una fuente de cadmio con valores por debajo del ECA. La fuente del cadmio son las aguas del embalse Pasto Grande y como se observa a lo largo de la cuenca el valor se va diluyendo con el ingreso de los afluentes como el río Chilota.

Calcio


Gráfico 31. Variación espacial del contenido de calcio de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua-del MAP III nov – dic 2014.

El calcio es el principal elemento responsable de la dureza del agua, elevadas concentraciones de calcio en el agua es perjudicial para el riego, puede ocasionar problemas de salinización de suelos, en el caso de agua de bebida, puede ocasionar problemas renales al consumidor. El ECA Agua Categoría 3, establece un valor de 200 mg/L para riego de vegetales.

Como se observa en el gráfico 31 el contenido de calcio en el agua del río Titire excede los valores establecidos por el ECA Agua Categoría 3, debido al ingreso de aguas termales.

Cobalto

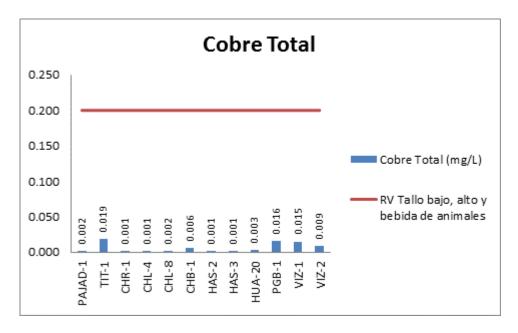
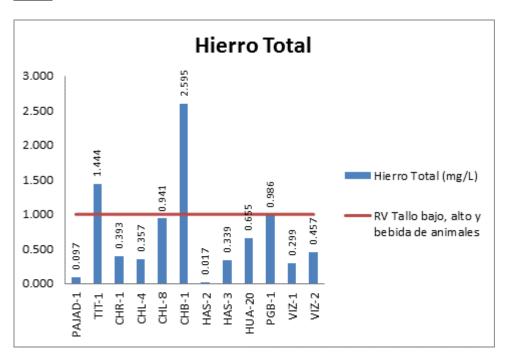


Gráfico 32. Variación espacial del contenido de cobalto de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014.

Como se observa en el gráfico 32, se ha determinado la presencia de cobalto en las muestras de aguas superficiales, pero en cantidades mínimas, por debajo del ECA.

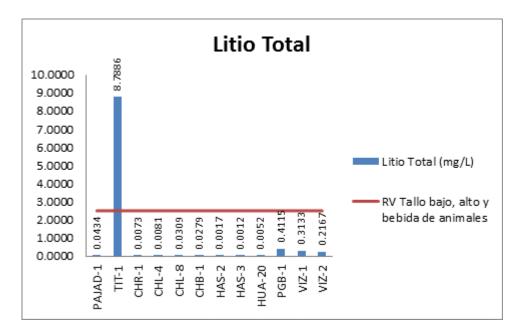
Cobre


Gráfico 33. Variación espacial del contenido de cobalto de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014.

El cobre es un elemento metálico de gran valor económico, considerado también en bajas concentraciones como un micronutriente. El ECA Agua Categoría 3, establece un valor de 0,2 mg/L para riego de vegetales y 0,5 para bebida de animales.

En el gráfico 33, se observa que el cobre se encuentra en muy bajas concentraciones en todas las estaciones a lo largo de toda la cuenca, presentando valores que van desde 0.002 hasta 0.019 mg/L.

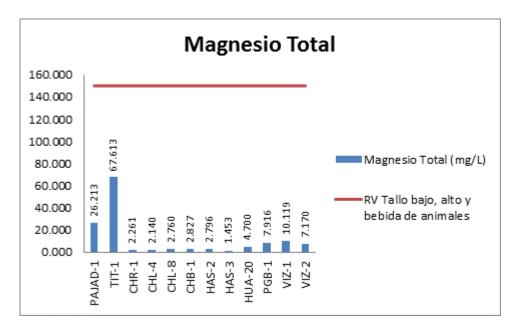
<u>Hierro</u>


Gráfico 34. Variación espacial del contenido de hierro de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014.

El hierro es un elemento metálico pesado, su presencia en el agua se debe en forma natural al paso del agua sobre material ferroso o por intervención antropogénica. El hierro al igual que el aluminio al disolverse puede liberar iones hidronio y bajar el pH. El ECA Agua Categoría 3 establece un valor de 6 mg/L de hierro total en el agua.

Como se observa en el gráfico 34, hay presencia de hierro en forma natural en todas la estaciones de monitoreo, en el caso del TIT-1 y CHB-1 se observa valores que exceden el ECA Agua categoría 3 debido al ingreso de aguas de naturaleza termal, en el caso de la cuenca del vizcachas también se observa contenidos altos de hierro desde el embalse Pasto Grande, que se va diluyendo hasta el VIZ-1, luego se incrementa por efecto del río Chilota.

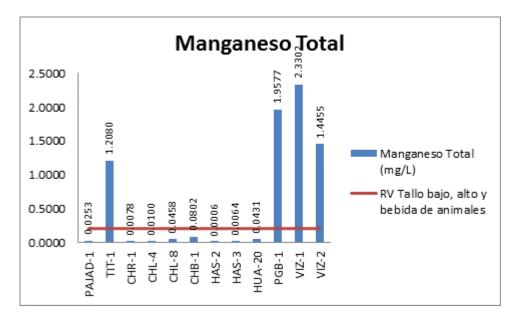
<u>Litio</u>


Gráfico 35. Variación espacial del contenido de litio de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014.

El litio es un elemento metálico ligero, su presencia en el agua en bajas concentraciones es muy apreciada en agua de mesa, el ECA Agua categoría 3 fija un estándar de calidad de 2.5 mg/L.

Como se observa en el gráfico 35, la presencia de litio en la cuenca del Titire es debido al ingreso de aguas de naturaleza termal. En las demás estaciones el contenido de litio está muy por debajo de lo establecido por el ECA Agua categoría 3.

Magnesio

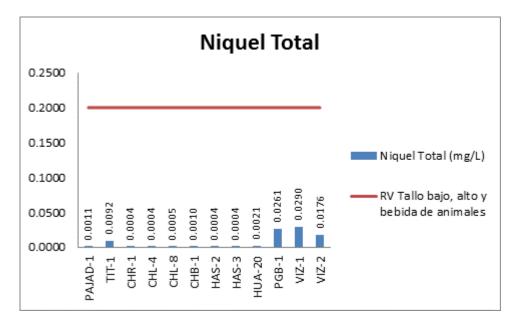

Gráfico 36. Variación espacial del contenido de magnesio de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014.

El magnesio es el otro elemento responsable de la dureza del agua, elevadas concentraciones de magnesio en el agua es perjudicial para el riego, puede ocasionar problemas de salinización de suelos, en el caso de agua de bebida, puede ocasionar problemas renales al consumidor. El ECA Agua Categoría 3, establece un valor de 150 mg/L para riego de vegetales.

Como se observa en la figura 36 la calidad del agua en el río Titire está influenciada por el ingreso de aguas termales que incrementan el contenido de magnesio en esta cuenca. Las otras estaciones presentan valores por debajo de lo establecido por el ECA Agua categoría 3.

Manganeso

Gráfico 37. Variación espacial del contenido de manganeso de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014.


El manganeso puede darle al agua un sabor, olor y color indeseable. El manganeso causa manchas cafés-negras en los utensilios, que no pueden ser removidos por detergentes. El manganeso es un elemento metálico común en la superficie de la tierra. A medida que el agua se filtra por el suelo y las piedras puede disolver este mineral y acarrearlo hacia el agua. El ECA Agua categoría 3 fija un valor de 0.2 mg/L como estándar de calidad.

En el gráfico 37 se observa que el contenido de manganeso en la cuenca del río Vizcachas está directamente relacionado con el Aluminio y el pH, presentan una misma fuente de ingreso proveniente de las aguas del Embalse de Pasto Grande.

En el caso del río Titire se presenta un incremento de manganeso debido al ingreso de aguas termales al río.

Níquel

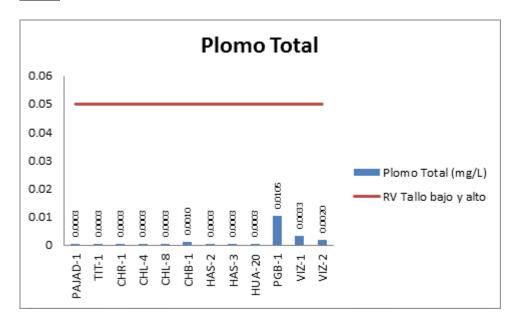


Gráfico 38. Variación espacial del contenido de níquel de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014.

Se ha determinado la presencia de bajas concentraciones de níquel en las aguas superficiales de los puntos de monitoreo, en el caso de las aguas provenientes del embalse Pasto Grande se tiene concentraciones bajas que no excenden lo establecido por el ECA Agua categoría 3.

Plomo

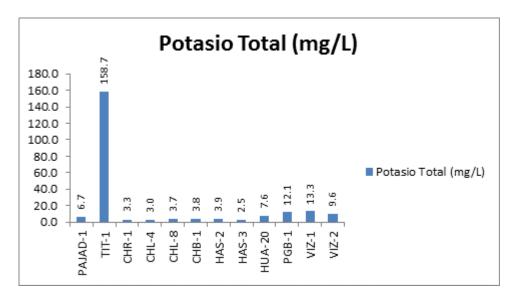


Gráfico 39. Variación espacial del contenido de plomo de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014.

Se ha determinado la presencia de bajas concentraciones de plomo en las aguas superficiales de los puntos de monitoreo, en el caso de las aguas provenientes del embalse Pasto Grande se tiene concentraciones bajas que no exceden lo establecido por el ECA Agua categoría 3.

Potasio

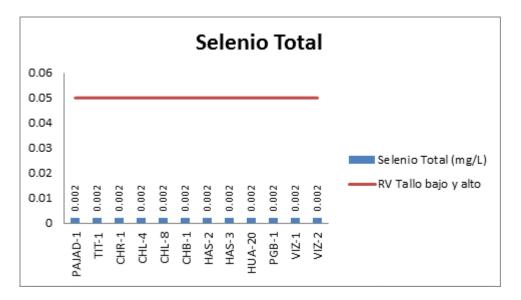


Gráfico 40. Variación espacial del contenido de potasio de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014.

El potasio es un elemento muy común en el agua, el ECA Agua categoría 3 no fija un valor para este parámetro, como se observa en el gráfico 40 el contenido de potasio presenta valores altos en la estación TIT-1 proveniente de aguas termales próximas al punto de monitoreo.

<u>Selenio</u>

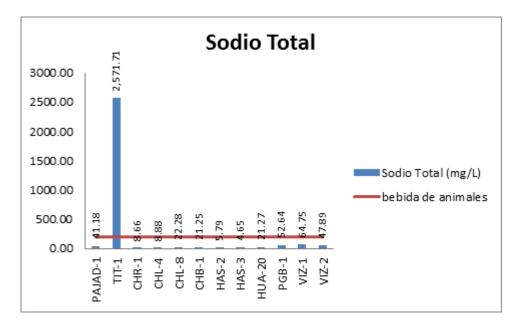
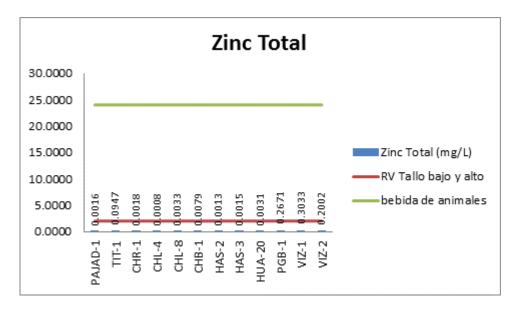


Gráfico 41. Variación espacial del contenido de selenio de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014.

No se ha determinado la presencia de selenio en las aguas superficiales de los puntos de monitoreo.

Sodio


Gráfico 42. Variación espacial del contenido de sodio de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III nov – dic 2014.

El sodio es un elemento abundante en el agua conjuntamente con el cloruro son los responsables de la conductividad del agua y los sólidos disuelto totales, su principal fuente es el cloruro de sodio del agua de mar, que se encuentra disperso sobre la superficie de terrenos que en tiempos pasados estuvieron bajo el mar. El riego con agua con altos valores de sodio puede degradar la calidad del suelo por salinización de estos. El ECA Agua Categoría 3, fija un valor de 200 mg/L para el sodio.

Como se observa en el gráfico 42, en el punto del río Titire (TIT-1) el contenido de sodio es alto debido al ingreso de aguas termales.

Zinc

Gráfico 43. Variación espacial del contenido de Zinc de las diferentes estaciones de monitoreo de calidad de agua superficial – área de abastecimiento de agua- del MAP III Nov – Dic 2014.

El Zinc es un elemento metálico no ferroso asociado al cobre y cadmio. En forma natural se puede encontrar en el agua entre 0.005 a 0.010 mg/L. El zinc no presenta mayor potencial tóxico, es un micronutriente para animales y humanos. La solubilidad del zinc depende de la temperatura y del pH del agua en cuestión. Cuando el pH es casi neutro, el zinc es insoluble en el agua. La solubilidad del zinc en el agua aumenta con la acidez. El ECA Agua Categoría 3, fija un valor de 2 y 24 mg/L para agua de riego y bebida de animales respectivamente.

Como se observa en el gráfico 43, en la cuenca se ha detectado bajas concentraciones de zinc.

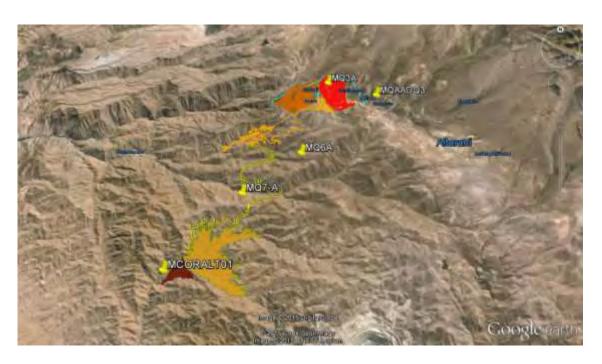
Tabla 11. Principales Observaciones de los resultados

Cuenca	Estación de Monitoreo	Parámetros observados que superan en ECA Agua categoría 3.	Explicación			
	PAJAD-1	Fluor, sulfatos	Influencia de aguas termales			
Titire	TIT-1	Conductividad eléctrica, bicarbonatos, fluoruros, cloruros, arsénico, boro, calcio, hierro, litio, manganeso, sodio	Influencia de aguas de naturaleza termal fuertemente mineralizadas, época seca bajo caudal.			
	CHR-1	pH alto, arsénico				
Chilota	CHL-4	pH alto, arsénico	Influencia de aguas termales			
	CHL-8	Arsénico				
	CHB-1	Arsénico, hierro				
Calasaya	HAS-2	Sin observación				
	HAS-3	Sin observación	Presencia de carbonatos.			
	HUA-20	pH alto				
Vizcachas	PGB-1	pH bajo, Aluminio, Manganeso	Presencia de iones con			
	VIZ-1	pH bajo, Hierro	capacidad ácida aluminio,			
	VIZ-2	pH bajo, manganeso	hierro asociado con Manganeso.			

7.1.5. Aseguramiento de la calidad de los ensayos de calidad de agua superficial

Se realizó el aseguramiento de la calidad del agua superficial verificando muestras duplicadas en los parámetros aceites y grasas, sólidos totales en suspensión, como se observa en la tabla 12, la variación de los resultados en las muestras es cero, en el caso de la muestra del VIZ-1 la variación es insignificante para los valores de sólidos totales en suspensión para el río Vizcachas que van desde 1 hasta 180 mg/L.

Tabla 12. Resultados de comparación de los resultados de las muestras duplicadas


	Parámetros					
Estaciones	AyG (1)	AyG (2)	STS (1)	STS (2)		
PGB-1	< 0.5	< 0.5	<1	<1		
VIZ-1	< 0.5	< 0.5	2	1		
CHL-8	< 0.5	< 0.5	15	15		
CHL-4	< 0.5	< 0.5	<1	<1		
HUA-20	< 0.5	< 0.5	2	2		

En los blancos analizados no se ha detectado la presencia de los analítos en estudio.

7.2. MONITOREO DE LA CALIDAD DEL SUELO

7.2.1. Ubicación de los puntos de monitoreo

Figura 02. Ubicación de los puntos de monitoreo de calidad de suelo – zona de operaciones MAP III nov - diciembre 2014.

Figura 03. Ubicación de los puntos de monitoreo de calidad de suelo – zona de abastecimiento de agua- MAP III nov - diciembre 2014.

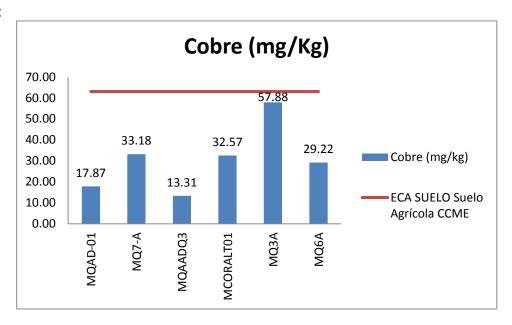
7.2.2. Resultados de los análisis químicos de laboratorio.

Tabla 13: Resultados de la Calidad de Suelo

Parámetros	LD	Puntos de Muestreo					ECA SUELO Suelo Agrícola	
		MQAD-01	MQ7-A	MQAADQ3	MCORALT01	MQ3A	MQ6A	
Inorgánicos								
Cianuro libre (mg/kg)	0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1	0.9
Cromo Hexavalente (mg/kg)	0.11	0.13	<0.11	< 0.11	<0.11	< 0.11	<0.11	0.4
Bifenilos Policlorados								
Aroclor 1016 (mg/kg)	0.0125	< 0.0125	< 0.0125	< 0.0125	< 0.0125	< 0.0125	< 0.0125	0.5
Aroclor 1221 (mg/kg)	0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	0.5
Aroclor 1232 (mg/kg)	0.0125	< 0.0125	< 0.0125	< 0.0125	< 0.0125	< 0.0125	< 0.0125	0.5
Aroclor 1242 (mg/kg)	0.0125	< 0.0125	< 0.0125	< 0.0125	< 0.0125	< 0.0125	< 0.0125	0.5
Aroclor 1248 (mg/kg)	0.0125	< 0.0125	< 0.0125	< 0.0125	< 0.0125	< 0.0125	< 0.0125	0.5
Aroclor 1254 (mg/kg)	0.0125	< 0.0125	< 0.0125	< 0.0125	< 0.0125	< 0.0125	< 0.0125	0.5
Aroclor 1260 (mg/kg)	0.0125	< 0.0125	< 0.0125	< 0.0125	< 0.0125	< 0.0125	< 0.0125	0.5
BTEX								
Benceno (mg/kg)	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.03
Etilbenceno (mg/kg)	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.082
m,p-Xileno (mg/kg)	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	11
o-Xileno (mg/kg)	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	11
Tolueno (mg/kg)	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.37
Fracción de Hidrocarburos								
Fracción de Hidrocarburos F1 (C5-C10) (mg/kg)	0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	<0.01	200
Fracción de Hidrocarburos F2 (C10-C28) (mg/kg)	3	<3	<3	<3	<3	<3	<3	1200
Fracción de Hidrocarburos F3 (C28-C40) (mg/kg)	3	<3	<3	<3	<3	<3	<3	3000
Hidrocarburos Aromáticos Policiclicos								
Benzo(a)pireno (mg/kg)	0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	0.1

	Automotive to you be Companying to the last to the contract of							
Naftaleno (mg/kg)	0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	
Parámetros	LD	Puntos de Muestreo					ECA SUELO	
		MQAD-01	MQ7-A	MQAADQ3	MCORALT01	MQ3A	MQ6A	Suelo Agrícola
Metales								
Cobre (mg/kg)	0.02	17.87	33.18	13.31	32.57	57.88	29.22	63 (CCME)
Aluminio (mg/kg)	0.3	7,594.5	11,860.1	6,647.6	13,896.5	8,338.4	9,656.6	
Antimonio (mg/kg)	0.005	2.465	< 0.005	0.138	0.009	0.008	0.016	
Arsénico (mg/kg)	0.06	40.14	4.98	2.64	9.44	3.48	5.82	50
Bario (mg/kg)	0.03	203.68	100.41	70.91	185.99	111.63	162.61	750
Berilio (mg/kg)	0.002	0.354	0.377	0.387	0.629	0.531	0.236	
Cadmio (mg/kg)	0.001	0.258	0.180	0.050	0.111	0.081	0.262	1.4
Cobalto (mg/kg)	0.001	6.828	10.206	3.854	13.052	5.882	7.890	
Cromo (mg/kg)	0.01	5.34	6.31	4.74	8.25	6.45	8.86	64 (CCME)
Hierro (mg/kg)	10	16,266 *	23,261 *	9,352 *	19,682 *	12,093 *	18,088 *	
Manganeso (mg/kg)	0.05	640.83	602.43	270.81	731.26	398.71	556.05	
Mercurio (mg/kg)	0.0025	0.0079	< 0.0025	0.0154	0.0065	0.0196	0.0083	6.6
Molibdeno (mg/kg)	0.02	0.91	0.29	0.43	0.24	0.20	0.43	
Niquel (mg/kg)	0.01	4.33	5.90	3.05	6.48	4.25	6.91	50 (CCME)
Plata (mg/kg)	0.002	0.007	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	
Plomo (mg/kg)	0.02	15.14	10.26	4.89	10.24	8.79	13.71	70
Selenio (mg/kg)	0.05	0.21	0.20	0.06	< 0.05	0.17	0.30	
Talio (mg/kg)	0.0005	0.3713	0.0796	0.0545	0.2493	0.1557	0.1046	
Thorio (mg/kg)	0.005	5.415	12.264	1.459	3.112	5.821	3.320	
Uranio (mg/kg)	0.0002	0.9315	1.1300	0.2790	0.5155	0.4465	0.4260	
Vanadio (mg/kg)	1	33	39	33	51	25	50	130 (CCME)
Zinc (mg/kg)	0.06	34.98	50.93	15.32	31.70	21.63	46.88	200 (CCME)
Pesticidas								
Aldrin (mg/kg)	0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	2
DDT (mg/kg)	0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.7
Endrin (mg/kg)	0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.01
Heptacloro (mg/kg)	0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.01

CCME: Concejo Canadiense de Ministros de Medio Ambiente



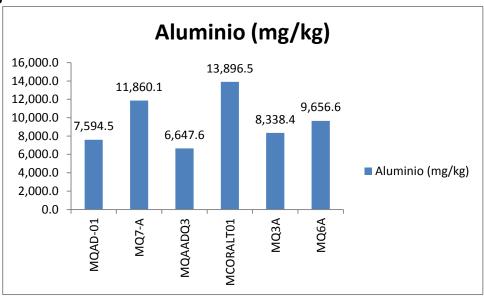
7.2.3. Interpretación de los Resultados de Laboratorio

No se ha encontrado presencia de cianuro libre, cromo hexavalente, PCBs, contaminación por hidrocarburos como BTEX o fracciones de hidrocarburos F1, F2 y F3 o PAHs, Pesticidas organoclorados.

Metales:

Cobre:

Gráfico 44. Variación espacial del contenido de cobre de las diferentes estaciones de monitoreo de calidad de suelo del MAP III Nov – Dic 2014.


Las cantidades promedio de cobre sobre la corteza terrestre, material basáltico y granito según S. R. Taylor son 50, 100 y 10 mg/kg, estos valores son comúnmente aceptados como aproximación a los valores de fondo para el cobre. En la modificación del estudio de impacto ambiental de 2008 se observa que el contenido de cobre en el suelo del área de operaciones tiene concentraciones que van desde 30.3 hasta 573 mg/kg, los valores de cobre en suelo del área de operaciones tienen una media de 47.8 y el 75 % de los valores no superan los 59.1 mg/kg.

Según el ECA suelo para actividades agrícolas Nacional y propuestos por CCME, la concentración de cobre en suelo no debe superar los 63 mg/kg, este valor ha sido determinado luego de evaluar efectos del cobre sobre microorganismos de suelo, plantas e invertebrados terrestres.

Como se observa en el gráfico 44, las concentraciones de cobre en los puntos de monitoreo de las estaciones de calidad de suelo presentan valores por debajo de lo establecido por el ECA suelo para actividades agrícolas Nacional y propuestos por CCME, además presenta valores que están dentro de lo esperado para suelos del área de operaciones. El valor más alto de 57.88 mg/kg obtenidos en el punto MQ3A se obtiene en la zona más cercana a la futura zona de explotación.

Aluminio

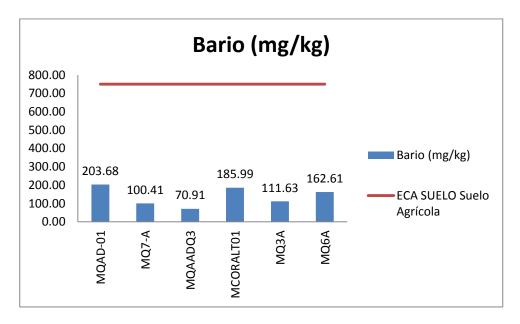

Gráfico 45. Variación espacial del contenido de aluminio de las diferentes estaciones de monitoreo de calidad de suelo del MAP III nov – dic 2014.

Las cantidades promedio de aluminio sobre la corteza terrestre, material basáltico y granito según S. R. Taylor son 8.23, 8.76 y 7.70 %, estos valores son comúnmente aceptados como aproximación a los valores de fondo para el aluminio. En la modificación del estudio de impacto ambiental de 2008 no se ha determinado el contenido de aluminio en el suelo del área de operaciones.

No se ha fijado valor para el ECA suelo para actividades agrícolas Nacional y propuestos por CCME. Como se observa en la gráfico 45, las concentraciones de aluminio en los puntos de monitoreo de las estaciones de calidad de suelo presentan valores muy por debajo de lo esperado.

Arsénico

Gráfico 46. Variación espacial del contenido de arsénico de las diferentes estaciones de monitoreo de calidad de suelo del MAP III nov – dic 2014.

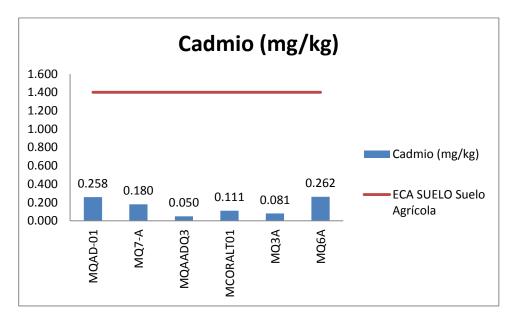

Las cantidades promedio de arsénico sobre la corteza terrestre, material basáltico y granito según S. R. Taylor son 1.8, 2.0 y 1.5 mg/kg, estos valores son comúnmente aceptados como aproximación a los valores de fondo para el arsénico. En la modificación del estudio de impacto ambiental de 2008 se observa que el contenido de arsénico en el suelo del área de operaciones tiene concentraciones que van desde 5.7 hasta 62.6 mg/kg, los valores de arsénico en suelo del área de operaciones tienen una media de 9.9 y el 75 % de los valores no superan los 13.8 mg/kg. Los suelos del área de operaciones están enriquecidos en arsénico comparados con los valores de fondo.

Según el ECA suelo para actividades agrícolas Nacional y propuestos por CCME, la concentración de arsénico en suelo no debe superar los 50 mg/kg, este valor ha sido determinado luego de evaluar efectos del arsénico sobre invertebrados terrestres, no se recomienda el uso de estos suelos para algunos cultivos.

Como se observa en el gráfico 46, las concentraciones de cobre en los puntos de monitoreo de las estaciones de calidad de suelo presentan valores por debajo de lo establecido por el ECA suelo para actividades agrícolas Nacional y propuestos por CCME, además presenta valores que están dentro de lo esperado para suelos del área de operaciones. El valor más alto de 40.14 mg/kg obtenidos en el punto MQAD-01 dentro de la zona de abastecimiento nos indica que esta zona tiene influencia volcánica y no es adecuada para fines agrícolas.

Bario

Gráfico 47. Variación espacial del contenido de bario de las diferentes estaciones de monitoreo de calidad de suelo del MAP III nov – dic 2014.

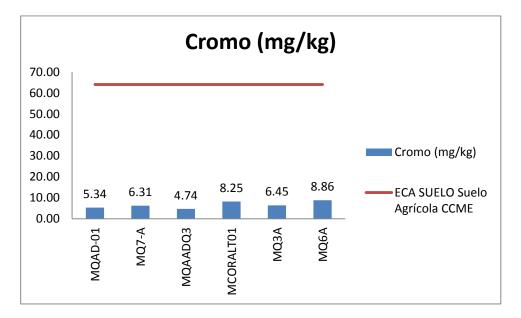

Las cantidades promedio de bario sobre la corteza terrestre, material basáltico y granito según S. R. Taylor son 425, 250 y 600 mg/kg, estos valores son comúnmente aceptados como aproximación a los valores de fondo para el bario. En la modificación del estudio de impacto ambiental de 2008 se observa que el contenido de bario en el suelo del área de operaciones tiene concentraciones que van desde 70.8 hasta 397 mg/kg, los valores de bario en suelo del área de operaciones tienen una media de 190 y el 75 % de los valores no superan los 248 mg/kg.

Según el ECA suelo para actividades agrícolas Nacional y propuestos por CCME, la concentración de bario en suelo no debe superar los 750 mg/kg, este valor ha sido determinado luego de evaluar efectos del bario sobre microorganismos de suelo, plantas e invertebrados terrestres.

Como se observa en el gráfico 47 las concentraciones de bario en los puntos de monitoreo de las estaciones de calidad de suelo presentan valores por debajo de lo establecido por el ECA suelo para actividades agrícolas Nacional y propuestos por CCME, además presenta valores que están dentro de lo esperado para suelos del área de operaciones. El valor más alto de 203.68 mg/kg obtenidos en el punto MQAD-01 está dentro de lo esperado para estos puntos.

Cadmio

Gráfico 48. Variación espacial del contenido de cadmio de las diferentes estaciones de monitoreo de calidad de suelo del MAP III nov – dic 2014.

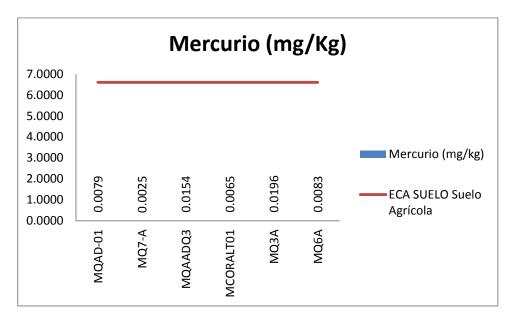

Las cantidades promedio de cadmio sobre la corteza terrestre, material basáltico y granito según S. R. Taylor son 0.2, mg/kg, estos valores son comúnmente aceptados como aproximación a los valores de fondo para el cadmio. En la modificación del estudio de impacto ambiental de 2008 se observa que el contenido de cadmio en el suelo del área de operaciones tiene concentraciones menores a 0.5 mg/kg.

Según el ECA suelo para actividades agrícolas Nacional y propuestos por CCME, la concentración de cadmio en suelo no debe superar los 1.4 mg/kg, este valor ha sido determinado luego de evaluar efectos del cadmio sobre microorganismos de suelo, plantas e invertebrados terrestres.

Como se observa en el gráfico 48, las concentraciones de cadmio en los puntos de monitoreo de las estaciones de calidad de suelo presentan valores por debajo de lo establecido por el ECA suelo para actividades agrícolas Nacional y propuestos por CCME, además presenta valores que están dentro de lo esperado para suelos del área de operaciones y abastecimiento de agua.

Cromo

Gráfico 49. Variación espacial del contenido de cromo de las diferentes estaciones de monitoreo de calidad de suelo del MAP III nov – dic 2014.

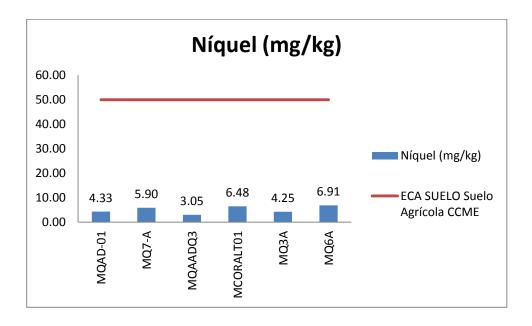

Las cantidades promedio de cromo sobre la corteza terrestre, material basáltico y granito según S. R. Taylor son 100, 200 y 5 mg/kg, estos valores son comúnmente aceptados como aproximación a los valores de fondo para el cromo. En la modificación del estudio de impacto ambiental de 2008 se observa que el contenido de cromo en el suelo del área de operaciones tiene concentraciones que van desde 5.0 hasta 22.8 mg/kg, los valores de cromo en suelo del área de operaciones tienen una media de 14.0 y el 75 % de los valores no superan los 19.6 mg/kg.

Según el ECA suelo para actividades agrícolas Nacional y propuestos por CCME, la concentración de cromo en suelo no debe superar los 64 mg/kg, este valor ha sido determinado luego de evaluar efectos del cobre sobre microorganismos de suelo, plantas e invertebrados terrestres.

Como se observa en el gráfico 49, las concentraciones de cromo en los puntos de monitoreo de las estaciones de calidad de suelo presentan valores por debajo de lo establecido por el ECA suelo para actividades agrícolas Nacional y propuestos por CCME, además presenta valores que están dentro de lo esperado para suelos del área de operaciones.

Mercurio

Gráfico 50. Variación espacial del contenido de mercurio de las diferentes estaciones de monitoreo de calidad de suelo del MAP III nov – dic 2014.

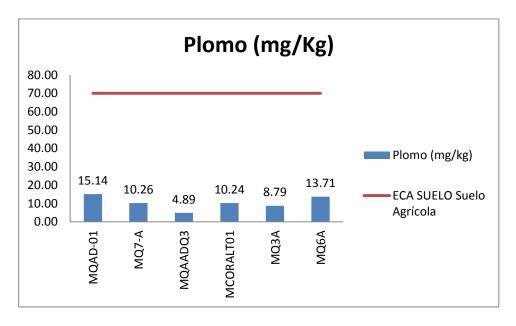

Las cantidades promedio de mercurio sobre la corteza terrestre, material basáltico y granito según S. R. Taylor son 0.08 mg/kg, este valor es comúnmente aceptados como aproximación a los valores de fondo para el mercurio. En la modificación del estudio de impacto ambiental de 2008 se observa que el contenido de mercurio en el suelo del área de operaciones tiene concentraciones que van desde 0.014 hasta 0.228 mg/kg, los valores de mercurio en suelo del área de operaciones tienen una media de 0.028 y el 75 % de los valores no superan los 0.039 mg/kg.

Según el ECA suelo para actividades agrícolas Nacional y propuestos por CCME, la concentración de mercurio en suelo no debe superar los 6.6 mg/kg, este valor ha sido determinado luego de evaluar efectos del mercurio sobre microorganismos de suelo, plantas e invertebrados terrestres.

Como se observa en el gráfico 50, las concentraciones de mercurio en los puntos de monitoreo de las estaciones de calidad de suelo presentan valores por debajo de lo establecido por el ECA suelo para actividades agrícolas Nacional y propuestos por CCME, además presenta valores que están dentro de lo esperado para suelos del área de operaciones.

Níquel

Gráfico 51. Variación espacial del contenido de níquel de las diferentes estaciones de monitoreo de calidad de suelo del MAP III nov – dic 2014.

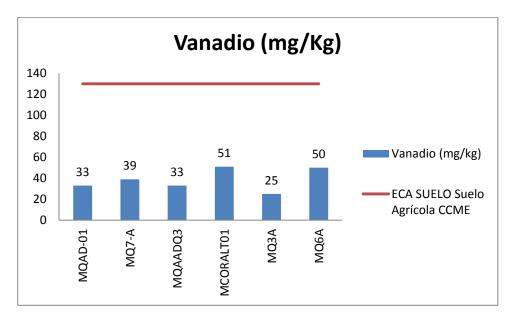

Las cantidades promedio de níquel sobre la corteza terrestre, material basáltico y granito según S. R. Taylor son 75, 150 y 0.5 mg/kg, estos valores son comúnmente aceptados como aproximación a los valores de fondo para el níquel. En la modificación del estudio de impacto ambiental de 2008 se observa que el contenido de níquel en el suelo del área de operaciones tiene concentraciones que van desde 5.6 hasta 16.2 mg/kg, los valores de níquel en suelo del área de operaciones tienen una media de 8.15 y el 75 % de los valores no superan los 10.75 mg/kg.

Según el ECA suelo para actividades agrícolas Nacional y propuestos por CCME, la concentración de níquel en suelo no debe superar los 50 mg/kg, este valor ha sido determinado luego de evaluar efectos del níquel sobre microorganismos de suelo, plantas e invertebrados terrestres.

Como se observa en la gráfico 51, las concentraciones de níquel en los puntos de monitoreo de las estaciones de calidad de suelo presentan valores por debajo de lo establecido por el ECA suelo para actividades agrícolas Nacional y propuestos por CCME, además presenta valores que están dentro de lo esperado para suelos del área de operaciones.

Plomo

Gráfico 52. Variación espacial del contenido de plomo de las diferentes estaciones de monitoreo de calidad de suelo del MAP III nov – dic 2014.

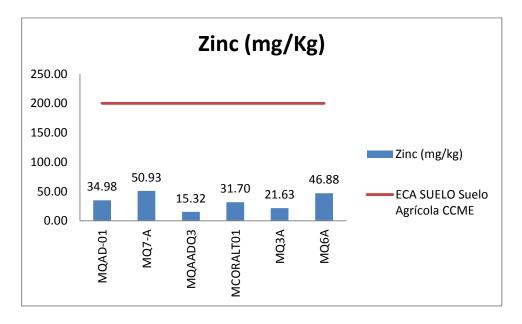

Las cantidades promedio de plomo sobre la corteza terrestre, material basáltico y granito según S. R. Taylor son 12.5, 5 y 20 mg/kg, estos valores son comúnmente aceptados como aproximación a los valores de fondo para el plomo. En la modificación del estudio de impacto ambiental de 2008 se observa que el contenido de plomo en el suelo del área de operaciones tiene concentraciones que van desde <30 hasta 268 mg/kg, el 86 % de los valores de plomo en suelo del área de operaciones no superan los 30 mg/kg.

Según el ECA suelo para actividades agrícolas Nacional y propuestos por CCME, la concentración de plomo en suelo no debe superar los 70 mg/kg, este valor ha sido determinado luego de evaluar efectos del plomo sobre microorganismos de suelo, plantas e invertebrados terrestres.

Como se observa en la gráfico 52, las concentraciones de plomo en los puntos de monitoreo de las estaciones de calidad de suelo presentan valores por debajo de lo establecido por el ECA Suelo para actividades agrícolas Nacional y propuestos por CCME, además presenta valores que están dentro de lo esperado para suelos del área de operaciones.

Vanadio

Gráfico 53. Variación espacial del contenido de vanadio de las diferentes estaciones de monitoreo de calidad de suelo del MAP III nov – dic 2014.


Las cantidades promedio de vanadio sobre la corteza terrestre, material basáltico y granito según S. R. Taylor son 135, 250 y 20 mg/kg, estos valores son comúnmente aceptados como aproximación a los valores de fondo para el vanadio. En la modificación del estudio de impacto ambiental de 2008 se observa que el contenido de vanadio en el suelo del área de operaciones tiene concentraciones que van desde 38.6 hasta 122 mg/kg, los valores de vanadio en suelo del área de operaciones tienen una media de 77.0 y el 75 % de los valores no superan los 85.6 mg/kg.

Según el ECA suelo para actividades agrícolas Nacional y propuestos por CCME, la concentración de vanadio en suelo no debe superar los 130 mg/kg, este valor ha sido determinado luego de evaluar efectos del vanadio sobre microorganismos de suelo, plantas e invertebrados terrestres.

Como se observa en el gráfico 53, las concentraciones de vanadio en los puntos de monitoreo de las estaciones de calidad de suelo presentan valores por debajo de lo establecido por el ECA suelo para actividades agrícolas Nacional y propuestos por CCME, además presenta valores que están dentro de lo esperado para suelos del área de operaciones y área de abastecimiento.

Pronaturaleza Augusti Mandra awa ia

Zinc

Gráfico 54. Variación espacial del contenido de zinc de las diferentes estaciones de monitoreo de calidad de suelo del MAP III nov – dic 2014.

Las cantidades promedio de zinc sobre la corteza terrestre, material basáltico y granito según S. R. Taylor son 70, 100 y 40 mg/kg, estos valores son comúnmente aceptados como aproximación a los valores de fondo para el zinc. En la modificación del estudio de impacto ambiental de 2008 se observa que el contenido de zinc en el suelo del área de operaciones tiene concentraciones que van desde 37.8 hasta 234 mg/kg, los valores de zinc en suelo del área de operaciones tienen una media de 65.4 y el 75 % de los valores no superan los 75.3 mg/kg.

Según el ECA suelo para actividades agrícolas Nacional y propuestos por CCME, la concentración de zinc en suelo no debe superar los 200 mg/kg, este valor ha sido determinado luego de evaluar efectos del zinc sobre microorganismos de suelo, plantas e invertebrados terrestres.

Como se observa en la gráfico 54, las concentraciones de zinc en los puntos de monitoreo de las estaciones de calidad de suelo presentan valores por debajo de lo establecido por el ECA Suelo para actividades agrícolas propuestos por CCME, además presenta valores que están dentro de lo esperado para suelos del área de operaciones.

7.2.4. Aseguramiento de la calidad de los resultados

Como se observa en el informe de resultados MA1418722_F y MA1418066_F la diferencia Porcentual Relativa de Duplicados para todos los metales se encuentra entre 0 a 12 % y el porcentaje de recuperación se encuentra entre 88 hasta 110 %. Estos valores son aceptables para el método acreditado por INDECOPI, son valores adecuados para la determinación de matrices sólidas como los suelos.

7.3. MONITOREO DE LA CALIDAD DEL AIRE

7.3.1. Ubicación de los puntos de monitoreo de la calidad del aire

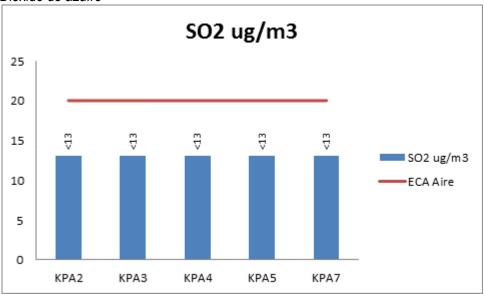
Figura 04. Ubicación de los puntos de monitoreo de calidad de aire MAP III nov - diciembre 2014.

7.3.2. Resultados de los análisis químicos de laboratorio.

Tabla 14. Resultados de análisis químicos de laboratorio de calidad de aire

Parámetro	LD						Е	staciones	de Monito	oreo							ECA Aire		
			KPA2			KPA3			KPA4		I	KPA5			KPA7	,			
		24 h	8 h	1 h	24 h	8 h	1 h	24 h	8 h	1 h	24 h			24 h	8 h*	1 h	24 h	8 h	1 h
Dióxido de Azufre (ug/m³)	13	<13			<13			<13			<13			<13			20		
Dióxido de Nitrógeno (ug/m³)	4			20			<4			60			<4			68			200
Material Particulado PM-10 Alto Volumen (ug/m³)	0.5	65.8			47.7			57.8			82.3			92.9			150		
Material Particulado PM-2.5 Bajo Volumen (ug/m³)	2.0	13.5			14.1			28.5			24.8			35.5			25		
Monóxido de Carbono (ug/m³)	335		4,037			4,648			2,840			3,835			4030			10000	30000

^{*} informe MA1418452



Parámetros (metales)	LD	Estaciones de Monitoreo							
		KPA2	KPA3	KPA4	KPA5	KPA7			
Aluminio (ug/m³)	0.0010	0.6149	0.5421	0.5500	0.7777	0.8724			
Antimonio (ug/m³)	0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	0.0009			
Arsénico (ug/m³)	0.0002	0.0019	0.0019	0.0032	0.0033	0.0027			
Bario (ug/m³)	0.0002	0.0115	0.0088	0.0093	0.0170	0.0353			
Berilio (ug/m³)	0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001			
Bismuto (ug/m³)	0.0003	< 0.0003	0.0003	< 0.0003	< 0.0003	< 0.0003			
Boro (ug/m³)	0.0003	0.0232 *	0.0044 *	0.0153 *	0.0079 *	0.0039			
Cadmio (ug/m³)	0.0003	< 0.0003	< 0.0003	0.0004	0.0003	< 0.0003			
Calcio (ug/m³)	0.007	4.548	1.791	1.574	1.984	2.839			
Cobalto (ug/m³)	0.0001	0.0005	0.0005	0.0005	0.0009	0.0005			
Cobre (ug/m³)	0.0006	0.0531	0.0769	0.0813	0.0852	0.0749			
Cromo (ug/m³)	0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003			
Estaño (ug/m³)	0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0004			
Estroncio (ug/m³)	0.0001	0.0061	0.0057	0.0051	0.0092	0.0153			
Fósforo (ug/m³)	0.002	0.043	0.039	0.071	0.086	0.104			
Hierro (ug/m³)	0.001	1.017	0.961	0.825	1.509	1.264			
Litio (ug/m³)	0.0001	0.0005 *	0.0007 *	0.0007 *	0.0011 *	0.0013			
Magnesio (ug/m³)	0.002	0.398	0.341	0.424	0.621	0.697			
Manganeso (ug/m³)	0.0003	0.0384	0.0352	0.0392	0.0973	0.037			
Mercurio (ug/m³)	0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001			
Molibdeno (ug/m³)	0.0002	0.0009	0.0012	0.0015	0.0011	0.0023			
Niquel (ug/m³)	0.0003	0.0007	0.0007	0.0014	0.0015	0.0013			
Plata (ug/m³)	0.0001	<0.0001 *	<0.0001 *	<0.0001 *	<0.0001 *	<0.0001 *			
Plomo (ug/m³)	0.0006	0.0051	0.0041	0.0068	0.0060	0.0045			
Potasio (ug/m³)	0.005	0.274 *	0.239 *	0.260 *	0.423 *	0.307			
Selenio (ug/m³)	0.0005	<0.0005 *	<0.0005 *	<0.0005 *	<0.0005 *	<0.0005 *			
Silicio (ug/m³)	0.3	<0.3 *	<0.3 *	<0.3 *	<0.3 *	<0.3 *			
Sodio (ug/m³)	0.001	0.491 *	0.461 *	1.145 *	1.266 *	1.604			
Talio (ug/m³)	0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001			
Titanio (ug/m³)	0.0002	0.0228	0.0235	0.0195	0.0296	0.025			
Vanadio (ug/m³)	0.0004	0.0022	0.0022	0.0023	0.0039	0.0034			
Zinc (ug/m³)	0.0008	0.0009	< 0.0008	0.0111	0.0089	0.024			

7.3.3. Interpretación de los Resultados de Laboratorio

Dióxido de azufre

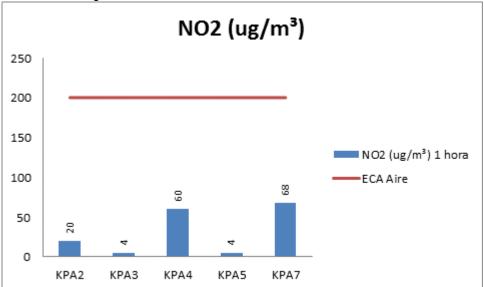


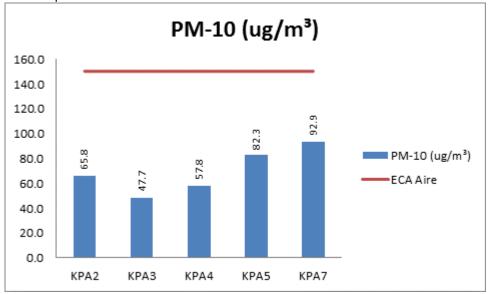
Gráfico 55. Variación espacial del contenido de dióxido de Azufre de las diferentes estaciones de monitoreo de calidad de aire del MAP III nov – dic 2014.

Como se observa en el gráfico 55, no se ha determinado la presencia de dióxido de azufre en ninguna de las estaciones de monitoreo de aire evaluadas en la zona de influencia del proyecto Quellaveco.

Dióxido de Nitrógeno

Gráfico 56. Variación espacial del contenido de dióxido de nitrógeno de las diferentes estaciones de monitoreo de calidad de aire del MAP III nov – dic 2014.

Estudios realizados en animales y humanos indican que exposiciones cortas a concentraciones que exceden los 200 µg/m³ de NO2 tienen efectos tóxicos adversos sobre la salud

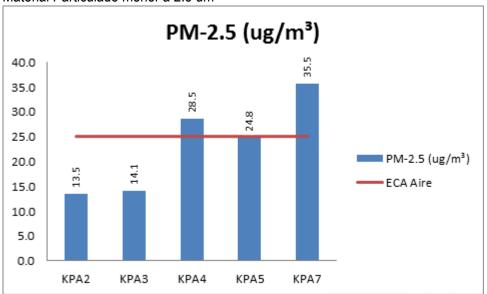

El NO2 puede ser emitido por procesos de combustión, son emitidos inicialmente como NO y luego rápidamente oxidado a NO2, asociado con la presencia de hidrocarburos es la principal fuente de ozono troposférico y aerosoles de nitrato que forman parte importante de los PM 2.5.

El estándar de calidad de aire nacional en concordancia con lo establecido por la OMS, fija un valor de calidad de aire para el dióxido de nitrógeno de 200 ug/m³ como promedio para 1 hora de medición. Sin embargo para el promedio anual fija un valor de 40 ug/m³.

Como se observa en la gráfico 56 las estaciones KPA4 y KPA7, ubicados en los centros poblados de Tala y San Antonio presentan valores significativos que están por debajo de lo establecido por el ECA Aire pero que son evidencia de actividad antropogénica de combustión. Estos resultados son más altos de lo esperado para estas estaciones comparándolos con los resultados históricos de calidad de aire de la zona de Tala y los valores obtenidos en la modificación del estudio de impacto ambiental de 2008 (marzo 2007 a agosto 2014), se sugiere realizar mayores monitoreos en la estación de monitoreo KPA7.

Material particulado menor a 10 um

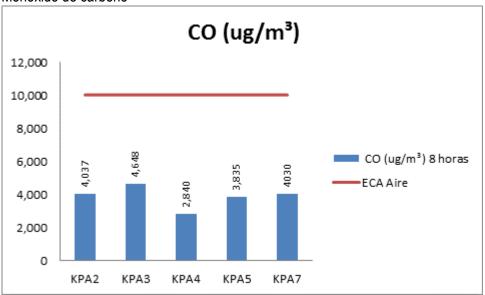
Gráfico 57. Variación espacial del contenido de material particulado menor a 10 um de las diferentes estaciones de monitoreo de calidad de aire del MAP III nov – dic 2014.


El material particulado de diámetro menor a 10 micras (PM10), por su tamaño, es capaz de ingresar al sistema respiratorio del ser humano, hasta los pulmones. Ocasiona efectos adversos sobre el sistema respiratorio y cardiovascular en corto y largo tiempo, contiene componentes carcinogénicos como los hidrocarburos aromáticos políciclicos PAHs.

El material particulado es producido por procesos mecánicos tales como actividades de construcción, polvo de caminos y de la combustión de combustibles fósiles.

Como se observa en el gráfico 57 todas las estaciones presentan material particulado PM-10 por debajo de lo establecido por el ECA Aire, en todos los casos se observa la influencia de procesos mecánicos y polvo, en el caso del KPA4 y KPA7 adicionalmente se debe considerar el efecto de las fuentes de combustión.

Material Particulado menor a 2.5 um

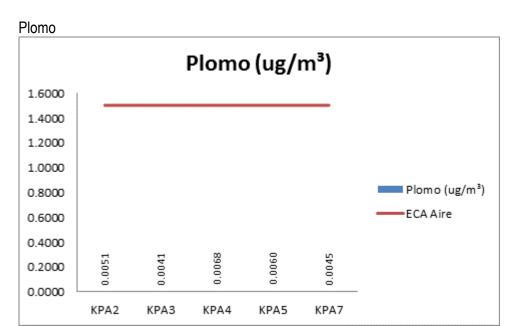

Gráfico 58. Variación Espacial del contenido de material particulado menor a 2.5 um de las diferentes estaciones de monitoreo de calidad de aire del MAP III Nov – Dic 2014.

Material particulado de diámetro menor a 5 micras. Puede ingresar hasta los alvéolos y luego a la sangre, provienen de partículas de aerosol o polvo de actividades de construcción y principalmente de fuentes de combustión. Ocasionan efectos adversos sobre el sistema respiratorio y cardiovascular en corto y largo tiempo, contiene componentes carcinogénicos como los hidrocarburos aromáticos policíclicos PAHs. El ECA Aire regula un valor de 25 ug/m3 para este parámetro, que coincide con lo sugerido por la OMS.

Como se observa en el gráfico 58, las estaciones de KPA4 y KPA7 zonas de referencia a centros poblados de Tala y San Antonio presenta valores que superan el ECA por ser lugares urbanos que están bajo la influencia de partículas provenientes de zonas aridas con escasa vegetación y de emisiones vehiculares por la cercanía a la carretera.

Monóxido de carbono

Gráfico 59. Variación espacial del contenido de monóxido de carbono de las diferentes estaciones de monitoreo de calidad de aire del MAP III nov – dic 2014.


El monóxido de carbono es un contaminante generado por la combustión incompleta de combustibles fósiles o biomasa, ocasionando asfixia por formación de la carboxihemoglobina. Los valores establecidos por el ECA Aire son muy altos para lograrlos en ambientes abiertos.

Como se observa en el gráfico 59 en todas las estaciones los valores de CO en el aire están muy por debajo de lo establecido por el ECA Aire.

Metales:

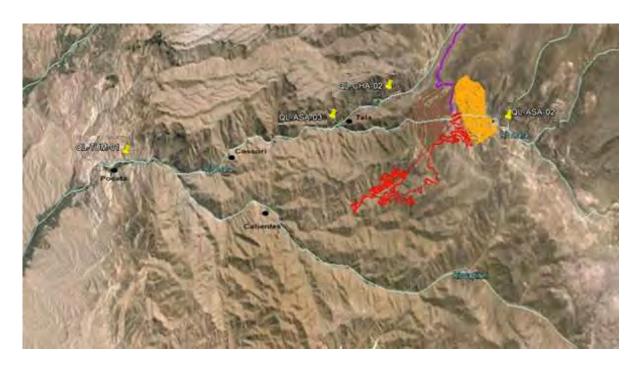
Al revisar el análisis de metales en las partículas de PM-10 se observa que los principales metales en las partículas son el aluminio, calcio, magnesio, sodio, potasio y cobre propio del polvo generado por erosión del suelo y actividades de construcción.

Gráfico 58. Variación espacial del contenido de plomo en material particulado menor a 10 um de las diferentes estaciones de monitoreo de calidad de aire del MAP III nov – dic 2014.

El contenido de plomo en el material particulado es despreciable comparado con lo establecido por el ECA Aire.

7.3.4 Aseguramiento de la calidad de resultados

Según informe de ensayos MA1418452_F, MA1419074_F, la Diferencia Porcentual Relativa de Duplicados para los parámetros se encuentra entre 0 a 7 % y el porcentaje de recuperación desde 89 hasta 112 % para los parámetros. Estos valores son aceptables para el método acreditado por INDECOPI.


7.4. MONITOREO HIDROBIOLÓGICO

7.4.1. Ubicación de los puntos de monitoreo

Figura 05. Ubicación de los puntos de monitoreo hidrobiológico en la zona de abastecimiento de agua del MAP III nov- diciembre 2014

Figura 06. Ubicación de los puntos de monitoreo hidrobiológico en la zona operaciones del MAP III nov- diciembre 2014

7.4.2. Resultados de los análisis de laboratorio

Una forma directa y eficiente de estudiar el estado trófico, la calidad ambiental, el nivel de impacto y las condiciones de preservación de los hábitats acuáticos, es evaluar el estado de la comunidad hidrobiológica que estos hábitats contienen; debido a que por sus características particulares los organismos vivos resumen información en un plano temporal muy amplio y es por ello que constituyen "la forma más directa y efectiva de medir la integridad de un cuerpo acuático" (Karr & Chu, 1997).

Una forma de medir es a través de indicadores numéricos de heterogeneidad de las comunidades biológicas, basados en la riqueza de especies y abundancia de individuos. Se aplican fórmulas específicas para sus estimaciones. Algunos de estos son: Riqueza (S), Abundancia (N), Equitatiividad (J'), Diversidad de Shannon-Wiener (H'), entre otros.

El desarrollo del presente programa de monitoreo del componente vida acuática se basa en los métodos utilizados y resultados obtenidos en el desarrollo de los EIAs, con algunas mejoras, metodológicas fundamentalmente, teniendo en cuenta avances recientes (posteriores al 2007) en cuanto al conocimiento de la biota acuática neotropical (y altoandina en particular).

Tabla 15. Resultados de hidrobiología: variables ecológicas de la comunidad de fitoplancton

ESTACIONES	FECHA DE MUESTREO	RIQUEZAESPECIFICA (N° DE ESPECIES)	ABUNDANCIA (Cel/ml)	EQUITATIVIDAD	INDICE DE DIVERSIDAD H' (Bits/indiv)
QL-ASA-03	06.12.2014	52	1405	0.74	2.93
QL-ASA-02	06.12.2014	27	745	0.64	2.13
QL-CHA-02	06.12.2014	15	216	0.75	2.04
QL-TUM-01	06.12.2014	33	1435	0.82	2.88
QL-VIZ-01	05.12.2014	17	240	0.93	2.64
QL-HUA-01	05.12.2014	18	300	0.86	2.50
QL-BCHI-06	05.12.2014	20	530	0.90	2.69

La riqueza especifica es el número de especies, en la estación QL-ASA-03 se encuentra el mayor valor y en la estación QL-CHA-05 el menor valor.

La abundancia es el número de organismos en un determinado volumen (Cel/ml), la estación de mayor abundancia es la estación QL-TUM-01 y la de menor abundancia la estación QL-CHA-02.

La equitatividad o uniformidad es un indicador ecológico de la distribución de los organismos en un ambiente, valores cercanos a 1 son ambientes de una buena distribución, es decir equitativos y valores cercanos a 0 de ambientes perturbados, en general los valores son altos propios de ambientes con buena distribución de organismos.

De 07 estaciones evaluadas, la estación QL-ASA-03 tiene el valor de H' (en bits por individuo) cercano el valor "umbral" de 3 unidades, considerado por muchos autores

(Magurran, 1988, Krebs, 1999, Magurran, 2004) como el límite entre un medio de "Alta" Pronaturaleza diversidad (H' ≥ 3,000 bits/ind.), y uno de diversidad "Media".

Tabla 16. Resultados de hidrobiología: variables ecológicas de la comunidad de perifiton

ESTACIONES	FECHA DE MUESTREO	RIQUEZA ESPECIFICA (N° DE ESPECIES)	ABUNDANCIA	EQUITATIVIDAD	INDICE DE DIVERSIDAD
QL-ASA-03	06.12.2014	42	595	0.88	3.29
QL-ASA-02	06.12.2014	16	203	0.68	1.89
QL-CHA-02	06.12.2014	14	138	0.73	1.93
QL-TUM-01	06.12.2014	18	116	0.75	2.17
QL-VIZ-01	05.12.2014	13	126	0.68	1.74
QL-HUA-01	05.12.2014	13	80	0.68	1.75
QL-BCHI-06	05.12.2014	13	59	0.84	2.16

La riqueza específica es mayor en la estación QL-ASA-03 y en las estaciones QL-VIZ-01, QL-HUA-01 Y QL-BCHI-06 los menores valores.

La estación con mayor abundancia es la estación QL-ASA-03 y la de menor abundancia la estación QL-BCHI-06.

En general los valores de equitatividad son altos propios de ambientes con buena distribución de organismos.

La estación QL-ASA-03 tiene el valor de H' (en bits por individuo) por encima del valor "umbral" de 3 unidades, considerado por muchos autores (Magurran, 1988, Krebs, 1999, Magurran, 2004) como el límite entre un medio de "Alta" diversidad (H' ≥ 3,000 bits/ind.), y uno de diversidad "Media"

Tabla 17. Resultados de hidrobiología: variables ecológicas de la comunidad de macroinvertebrados bentónicos

ESTACIONES	FECHA DE MUESTREO	RIQUEZA ESPECIFICA (N° DE ESPECIES)	ABUNDANCIA	EQUITATIVIDAD	INDICE DE DIVERSIDAD
QL-ASA-03	06.12.2014	20	465	0.82	2.44
QL-ASA-02	06.12.2014	10	148	0.89	2.06
QL-CHA-02	06.12.2014	12	219	0.91	2.27
QL-TUM-01	06.12.2014	11	234	0.91	2.17
QL-VIZ-01	05.12.2014	9	120	0.89	1.95
QL-HUA-01	05.12.2014	9	141	0.86	1.89
QL-BCHI-06	05.12.2014	13	333	0.95	2.43

La riqueza específica es mayor en la estación QL-ASA-03 y en las estaciones QL-VIZ-01 y QL-HUA-01 los menores valores.

La estación con mayor abundancia es la estación QL-ASA-03 y la de menor abundancia la estación QL-VIZ-01.

En general los valores de equitatividad son altos propios de ambientes con buena distribución de organismos.

Los valores encontrados en las estaciones son valores de H' (en bits por individuo) por debajo del valor "umbral" de 3 unidades, considerado por muchos autores (Magurran, 1988, Krebs, 1999, Magurran, 2004) como el límite entre un medio de "Alta" diversidad (H' ≥ 3,000 bits/ind.), osea son de diversidad "Media".

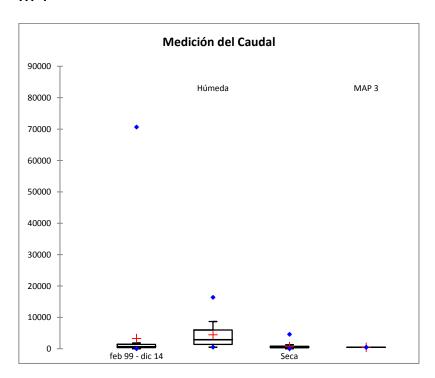
Tabla 18. Resultados de hidrobiología: variables fisicoquímicas en las estaciones muestreadas

PARÁMETROS	QL-VIZ-	QL-HUA-	QL-BCHI-	QL-ASA-	QL-ASA-	QL-CHA-	QL-TUM-	QL-COR-
	01	01	06	02	03	02	01	01
Temperatura (°C)	16.58	14.77	15.01	10.8	17.22	19.53	22.11	-
Oxigeno (mg/l)	2.88	2.8	3.48	4.2	4.05	3.88	5.33	-
pН	4.05	7.03	9.07	7.29	7.72	8.38	7.99	-
Conductividad (µS/cm)	620	98.63	88.81	142.1	147.1	96.10	334.5	-

En promedio las estaciones consideradas del monitoreo ambiental participativo de la tercera campaña en Moquegua desarrollado en diciembre de 2014, presentan valores medios de riqueza específica, abundancia, índice de Margalef, equitatividad e índice de diversidad relacionada con la época seca.

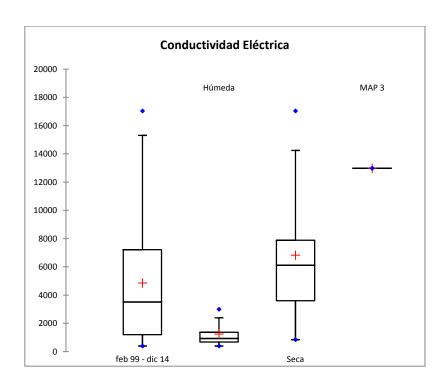
En general la mayor biodiversidad se presentó en la estación QL-ASA-03.

En general la menor biodiversidad se presentó en la estación QL-VIZ-01.

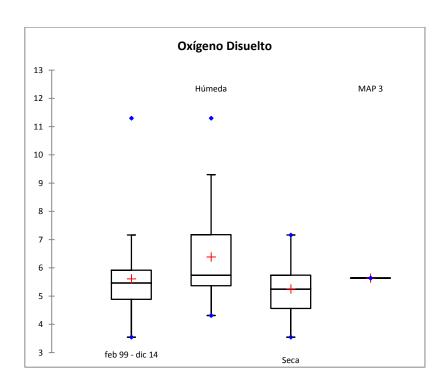


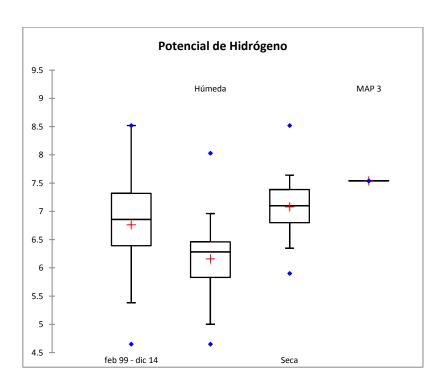
7.5. VALIDACION DE LA LÍNEA BASE AMBIENTAL

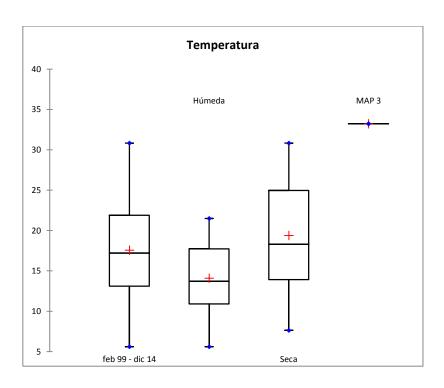
7.5.1. Calidad de agua superficial área de abastecimiento

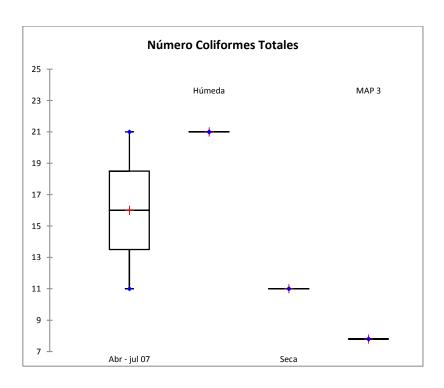

Se comparó los resultados de los parámetros de calidad de agua superficial -área de abastecimiento de agua- de las estaciones de monitoreo medidos en diciembre del 2014 con la data disponible del EIA y monitoreo de la empresa AAQ. Se presenta como ejemplo de diagramas los resultados de la estación TIT-1, los diagramas de los puntos CHL-8, PGB-1 y VIZ-2 se encuentran en el anexo 3. Los resultados de las estaciones CHR-1, CHL-4, CHB-1, HAS-2, HAS-3, HUA-20 y VIZ-1, se presentan solo como resultados por tener poca información de estos, el PAJAD-1 es un punto adicional que no se encuentra en el EIA y fue sugerido por el comité en el momento del monitoreo en campo.

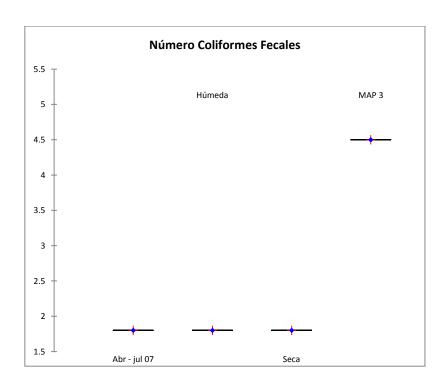
TIT-1


	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. De				
observaciones	49	15	34	1
Mínimo	29.30	547.75	29.30	453.40
Máximo	70617.86	70617.86	4600.00	453.40
1st Quartil	357.00	1369.10	311.25	453.40
Mediana	673.00	2927.00	542.00	453.40
3rd Quartil	1369.10	6000.00	798.45	453.40
Promedio	3284.17	4450.49	668.19	453.40

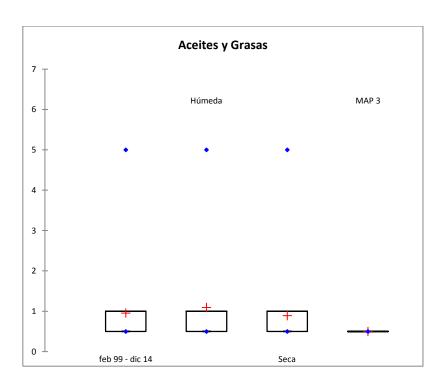

	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				
observaciones	54	19	35	1
Mínimo	395.00	395.00	842.00	
Máximo	17043.00	3000.00	17043.00	
1st Quartil	1194.50	676.50	3596.50	
Mediana	3504.00	928.00	6100.00	12980.00
3rd Quartil	7212.50	1369.00	7885.00	
Promedio	4863.00	1242.53	6828.40	


	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				_
observaciones	51	16	35	1
Mínimo	3.55	4.31	3.55	
Máximo	11.30	11.30	7.16	
1st Quartil	4.89	5.37	4.56	
Mediana	5.46	5.74	5.25	5.64
3rd Quartil	5.92	7.18	5.74	
Promedio	5.61	6.39	5.25	

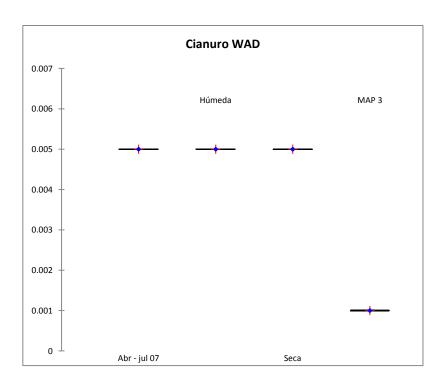

	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				
observaciones	54	19	35	1
Mínimo	4.65	4.65	5.90	
Máximo	8.52	8.03	8.52	
1st Quartil	6.39	5.83	6.80	
Mediana	6.85	6.28	7.10	7.54
3rd Quartil	7.32	6.46	7.38	
Promedio	6.77	6.16	7.08	

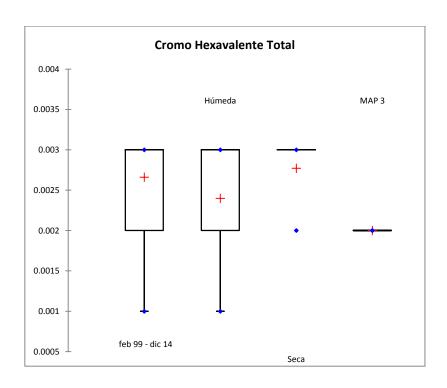

	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				_
observaciones	51	16	35	1
Mínimo	5.60	5.60	7.64	
Máximo	30.83	21.50	30.83	
1st Quartil	13.10	10.90	13.91	
Mediana	17.20	13.70	18.30	33.23
3rd Quartil	21.89	17.72	24.96	
Promedio	17.56	14.09	19.38	

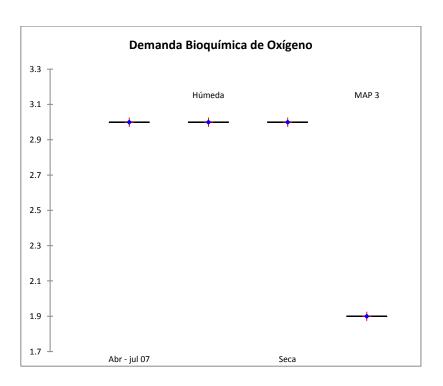
Estadística	Abr - jul 07	Húmeda	Seca	MAP III
No. de				_
observaciones	2	1	1	1
Mínimo	11.00	21.00	11.00	
Máximo	21.00	21.00	11.00	
Promedio	16.00	21.00	11.00	7.80

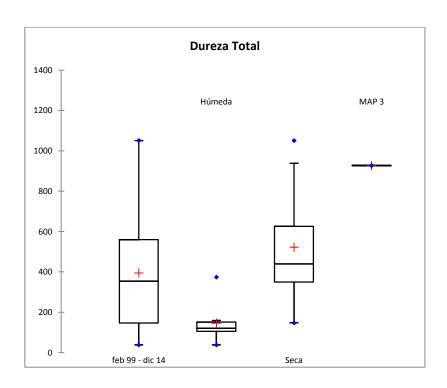


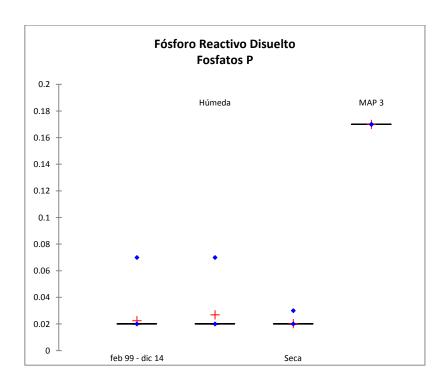
Estadística	Abr - jul 07	Húmeda	Seca	MAP III
No. de				_
observaciones	2	1	1	1
Mínimo	1.80	1.80	1.80	
Máximo	1.80	1.80	1.80	
Promedio	1.80	1.80	1.80	4.50

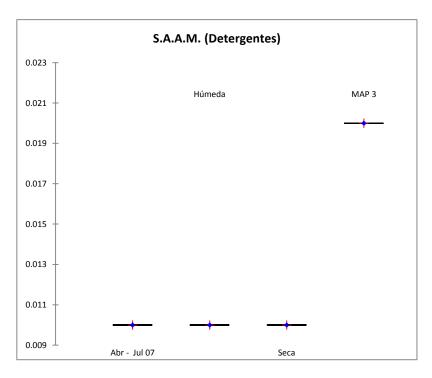

El valor alto debe ser verificado en posteriores campañas.


	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				
observaciones	53	16	37	1
Mínimo	0.50	0.50	0.50	
Máximo	5.00	5.00	5.00	
1st Quartil	0.50	0.50	0.50	
Mediana	1.00	1.00	1.00	0.5000
3rd Quartil	1.00	1.00	1.00	
Promedio	0.9528	1.09	0.89	

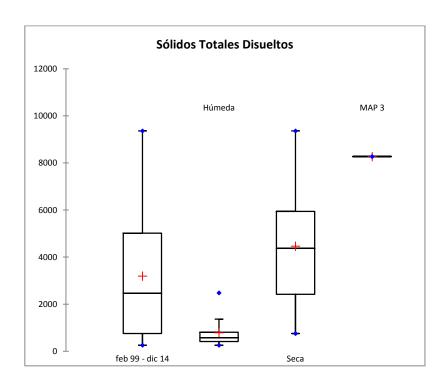

Estadística	Abr - jul 07	Húmeda	Seca	MAP III
No. de				_
observaciones	2	1	1	1
Mínimo	0.0050	0.0050	0.0050	
Máximo	0.0050	0.0050	0.0050	
Promedio	0.0050	0.0050	0.0050	0.0010


	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				
observaciones	50	15	35	1
Mínimo	0.0010	0.0010	0.0020	
Máximo	0.0030	0.0030	0.0030	
1st Quartil	0.0020	0.0020	0.0030	
Mediana	0.0030	0.0030	0.0030	0.0020
3rd Quartil	0.0030	0.0030	0.0030	
promedio	0.0027	0.0024	0.0028	

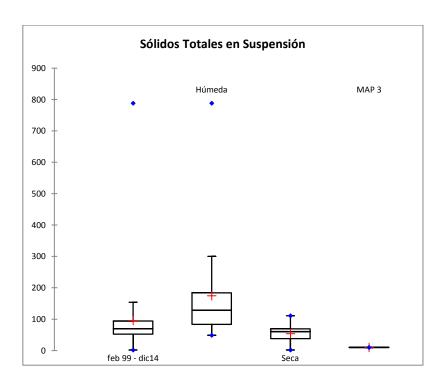

Estadística	Abr - jul 07	Húmeda	Seca	MAP III
No. de				
observaciones	2	1	1	1
Mínimo	3.0000	3.0000	3.0000	1.9000
Máximo	3.0000	3.0000	3.0000	1.9000
Promedio	3.0000	3.0000	3.0000	1.9000

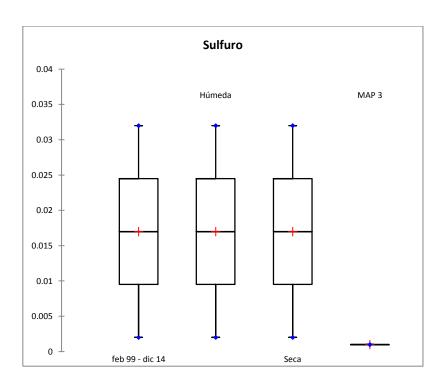

	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				_
observaciones	56	19	37	1
Mínimo	38.2000	38.2000	147.6000	
Máximo	1051.0000	374.1000	1051.0000	
1st Quartil	146.8000	105.0000	349.9000	
Mediana	354.6500	120.0000	439.2000	926.7000
3rd Quartil	559.9250	151.6000	625.6000	
promedio	394.8423	146.0616	522.5946	

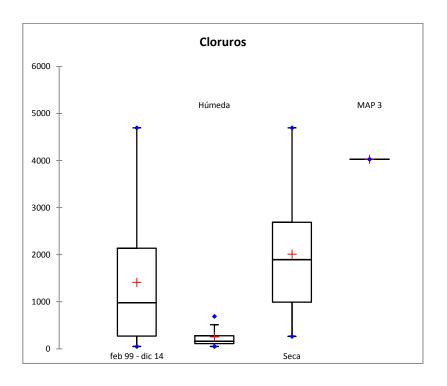
	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				
observaciones	59	17	36	1
Mínimo	0.0200	0.0200	0.0200	
Máximo	0.0700	0.0700	0.0300	
1st Quartil	0.0200	0.0200	0.0200	
Mediana	0.0200	0.0200	0.0200	0.1700
3rd Quartil	0.0200	0.0200	0.0200	
promedio	0.0225	0.0268	0.0203	

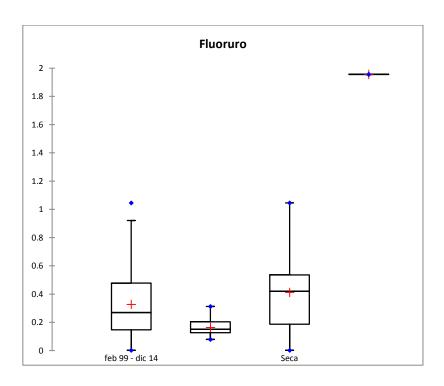


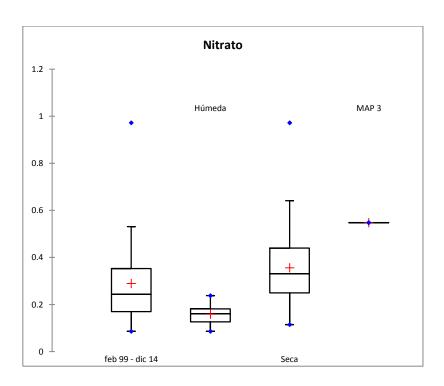
Estadística	Abr - jul 07	Húmeda	Seca	MAP III
No. de				_
observaciones	2	1	1	1
Mínimo	0.0100	0.0100	0.0100	0.0200
Máximo	0.0100	0.0100	0.0100	0.0200
Promedio	0.0100	0.0100	0.0100	0.0200

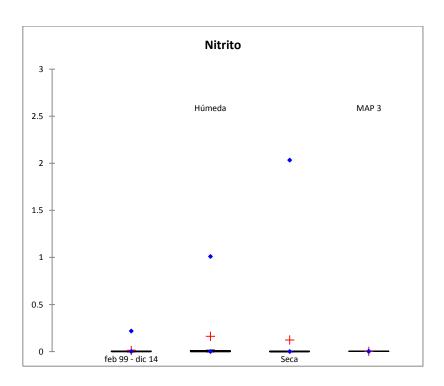

El valor diferente se debe a un cambio en el límite de detección del parámetro

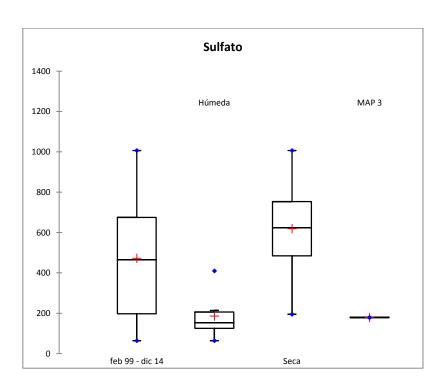

	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				
observaciones	55	19	36	1
Mínimo	255.0000	255.0000	751.0000	
Máximo	9362.0000	2480.0000	9362.0000	
1st Quartil	755.0000	415.5000	2416.2500	
Mediana	2462.0000	573.0000	4368.0000	8275.0000
3rd Quartil	5014.0000	806.0000	5941.7500	
promedio	3196.9636	789.4211	4467.6111	

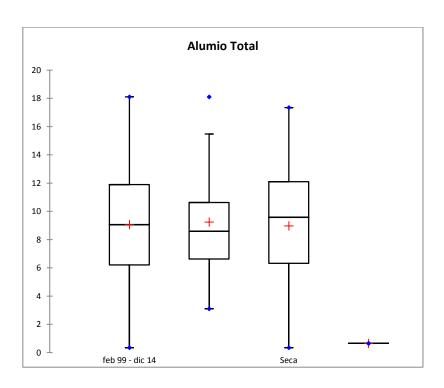

	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				
observaciones	55	19	36	1
Mínimo	2.0000	49.0000	2.0000	
Máximo	788.0000	788.0000	111.0000	
1st Quartil	52.5000	83.5000	38.0000	
Mediana	69.0000	129.0000	60.5000	10.0000
3rd Quartil	94.0000	184.0000	69.2500	
promedio	95.7091	174.6316	54.0556	

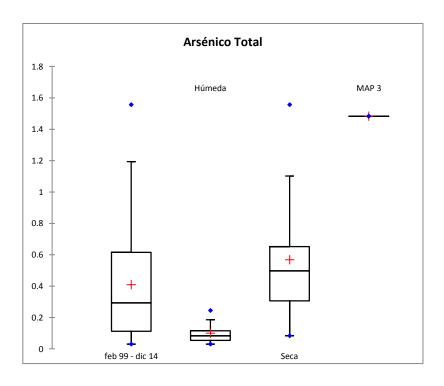

	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				_
observaciones	57	57	57	57
Mínimo	0.0020	0.0020	0.0020	
Máximo	0.0320	0.0320	0.0320	
promedio	0.0170	0.0170	0.0170	0.0010

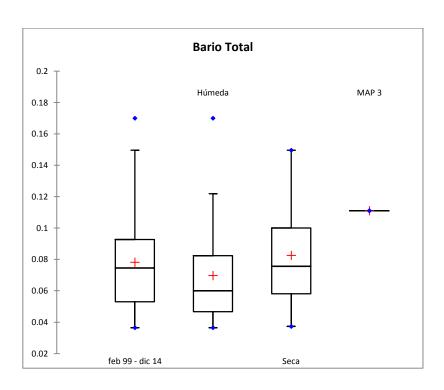

	feb 99 - dic			
Estadístico	14	Húmeda	Seca	MAP III
No. de				_
observaciones	56	19	37	1
Mínimo	48.030	48.030	262.800	
Máximo	4695.000	689.500	4695.000	
1° Cuartil	269.250	110.865	992.200	
Mediana	976.550	162.100	1897.000	
3° Cuartil	2137.500	278.500	2686.000	
Media	1413.913	252.584	2010.270	4026.050

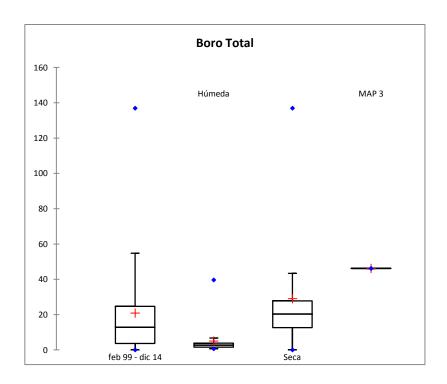

	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				
observaciones	56	17	39	1
Mínimo	0.0020	0.0790	0.0020	
Máximo	1.0460	0.3120	1.0460	
1st Quartil	0.1470	0.1265	0.1870	
Mediana	0.2690	0.1500	0.4200	1.9560
3rd Quartil	0.4780	0.2035	0.5360	
promedio	0.3274	0.1634	0.4117	

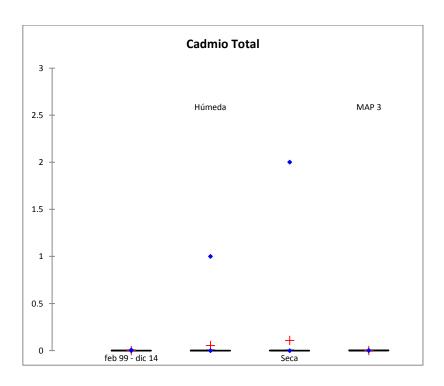

	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				_
observaciones	56	19	37	1
Mínimo	0.0860	0.0860	0.1150	
Máximo	0.9720	0.2380	0.9720	
1st Quartil	0.1695	0.1265	0.2490	
Mediana	0.2435	0.1600	0.3310	0.5480
3rd Quartil	0.3528	0.1810	0.4400	
promedio	0.2893	0.1587	0.3563	

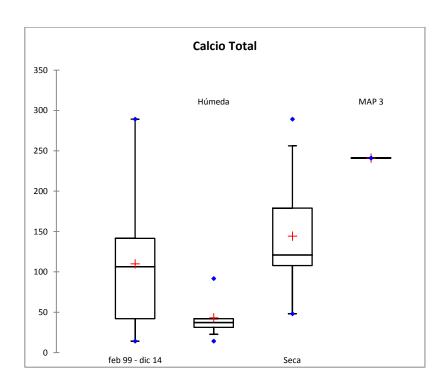

	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				
observaciones	36	19	37	1
Mínimo	0.0010	0.0010	0.0010	
Máximo	0.2180	1.0110	2.0340	
1st Quartil	0.0010	0.0010	0.0010	
Mediana	0.0010	0.0010	0.0010	0.0030
3rd Quartil	0.0050	0.0100	0.0010	
promedio	0.0116	0.1622	0.1235	

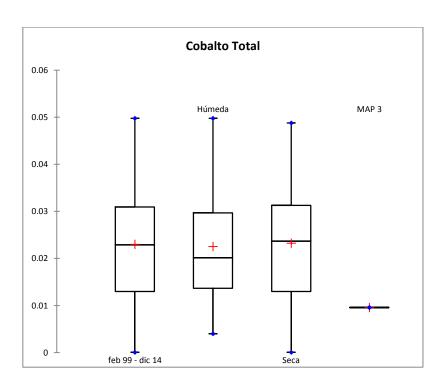

	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				
observaciones	56	19	37	1
Mínimo	63.9300	63.9300	194.8000	
Máximo	1006.0000	409.9000	1006.0000	
1st Quartil	197.2750	124.9500	484.0000	
Mediana	464.2500	152.9000	623.2000	178.7200
3rd Quartil	674.9500	205.9000	753.3000	
promedio	472.2123	186.2416	619.0622	

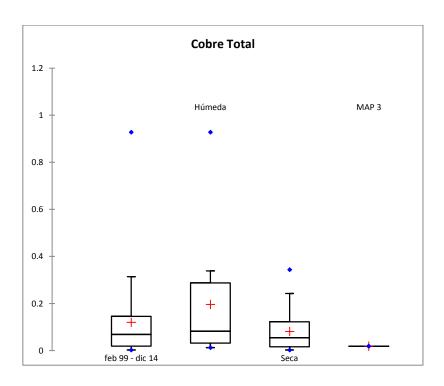

	feb 99 - dic			_
Estadística	14	Húmeda	Seca	MAP III
No. de				
observaciones	56	19	37	1
Mínimo	0.3430	3.0970	0.3430	
Máximo	18.1000	18.1000	17.3400	
1st Quartil	6.2033	6.6290	6.3220	
Mediana	9.0590	8.6000	9.5710	0.6500
3rd Quartil	11.8900	10.6300	12.1000	
promedio	9.0586	9.2395	8.9656	

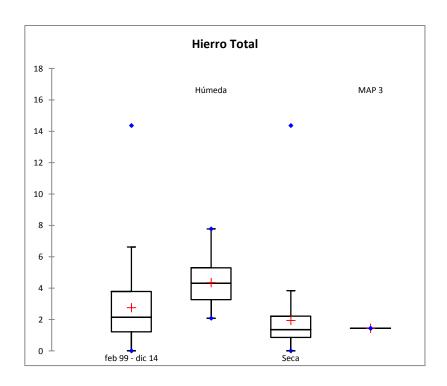

	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				_
observaciones	56	19	37	1
Mínimo	0.0308	0.0308	0.0841	
Máximo	1.5570	0.2452	1.5570	
1st Quartil	0.1122	0.0548	0.3068	
Mediana	0.2929	0.0829	0.4973	1.4830
3rd Quartil	0.6149	0.1160	0.6517	
promedio	0.4093	0.1001	0.5680	

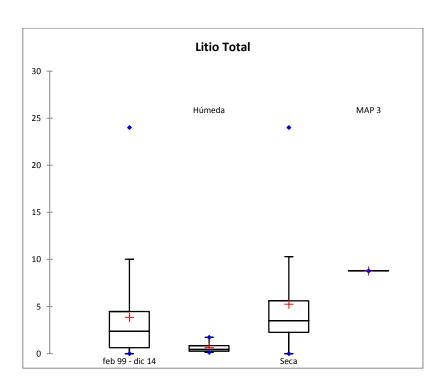

	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				
observaciones	56	19	37	1
Mínimo	0.0365	0.0365	0.0373	
Máximo	0.1700	0.1700	0.1496	
1st Quartil	0.0530	0.0467	0.0581	
Mediana	0.0746	0.0599	0.0755	0.1110
3rd Quartil	0.0927	0.0824	0.1000	
promedio	0.0782	0.0698	0.0825	

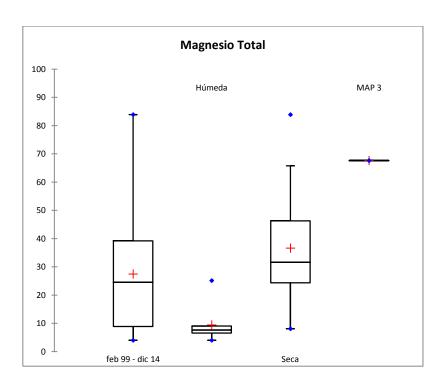

	feb 99 - dic			_
Estadística	14	Húmeda	Seca	MAP III
No. de				_
observaciones	56	19	37	1
Mínimo	0.0004	0.6406	0.0004	
Máximo	136.9000	39.6300	136.9000	
1st Quartil	3.6870	1.6100	12.6800	
Mediana	12.9250	2.7600	20.3700	46.1500
3rd Quartil	24.7375	3.8690	27.7500	
promedio	20.9192	5.0230	29.0821	

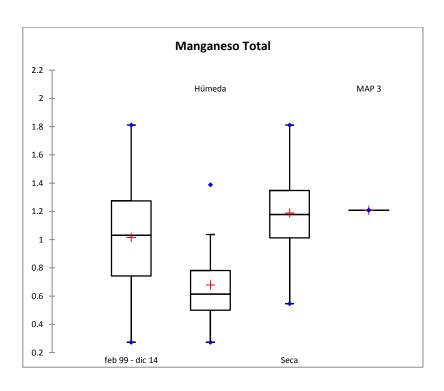

	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				
observaciones	56	19	37	1
Mínimo	0.0000	0.0000	0.0000	
Máximo	0.0056	1.0014	2.0022	
1st Quartil	0.0000	0.0000	0.0000	
Mediana	0.0000	0.0000	0.0000	0.0017
3rd Quartil	0.0010	0.0010	0.0011	
promedio	0.0008	0.0533	0.1089	

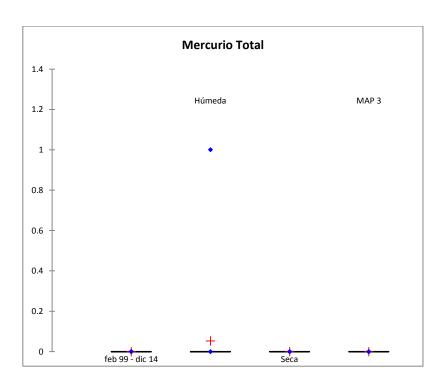

	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				_
observaciones	56	19	37	1
Mínimo	14.3000	14.3000	48.1500	
Máximo	289.3000	91.6600	289.3000	
1st Quartil	42.0275	31.3550	107.8000	
Mediana	106.2000	37.3000	120.9000	240.9950
3rd Quartil	141.5750	41.9150	179.0000	
promedio	109.9648	43.2511	144.2232	

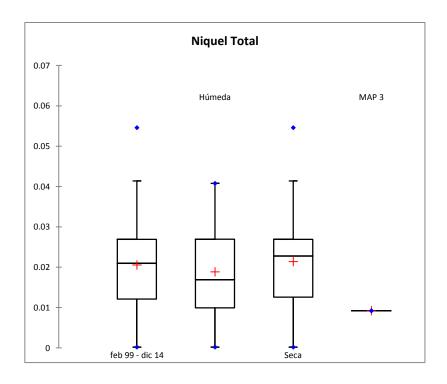

	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
-	14	Humeua	Jeca	WAT III
No. de				
observaciones	56	19	37	1
Mínimo	0.0000	0.0040	0.0000	
Máximo	0.0498	0.0498	0.0488	
1st Quartil	0.0130	0.0136	0.0130	
Mediana	0.0229	0.0201	0.0237	0.0096
3rd Quartil	0.0309	0.0297	0.0313	
promedio	0.0230	0.0225	0.0232	

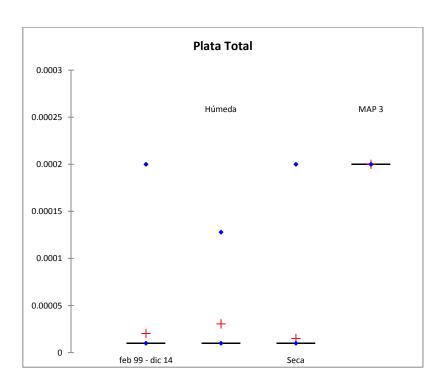

	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				_
observaciones	56	19	37	1
Mínimo	0.0028	0.0130	0.0028	
Máximo	0.9276	0.9276	0.3436	
1st Quartil	0.0186	0.0318	0.0162	
Mediana	0.0684	0.0826	0.0543	0.0190
3rd Quartil	0.1451	0.2873	0.1223	
promedio	0.1202	0.1962	0.0811	

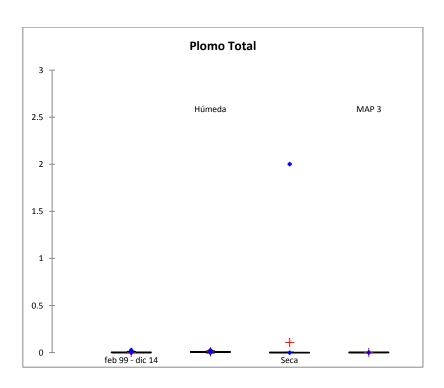

	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				_
observaciones	56	19	37	1
Mínimo	0.0010	2.0800	0.0010	
Máximo	14.3600	7.7780	14.3600	
1st Quartil	1.2160	3.2715	0.8630	
Mediana	2.1490	4.3220	1.3580	1.4440
3rd Quartil	3.7915	5.3000	2.2190	
promedio	2.7614	4.3591	1.9409	

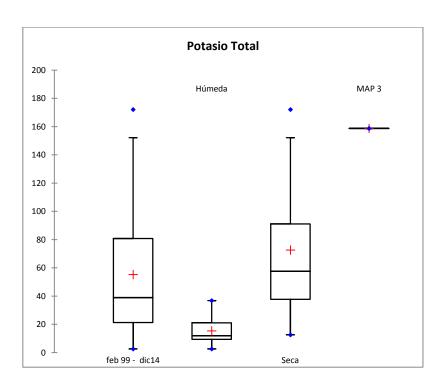

	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				_
observaciones	56	19	37	1
Mínimo	0.0010	0.1310	0.0010	
Máximo	24.0100	1.7230	24.0100	
1st Quartil	0.6230	0.2430	2.2610	
Mediana	2.3670	0.4360	3.4920	8.7886
3rd Quartil	4.4600	0.8500	5.5970	
promedio	3.8534	0.6412	5.2424	

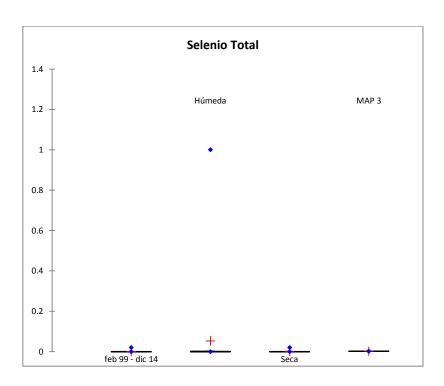

	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				
observaciones	56	19	37	1
Mínimo	4.0000	4.0000	8.0740	
Máximo	83.8900	25.1500	83.8900	
1st Quartil	8.8935	6.5465	24.3500	
Mediana	24.4950	7.6500	31.6400	67.6130
3rd Quartil	39.1750	9.0290	46.2800	
promedio	27.4349	9.4701	36.6601	

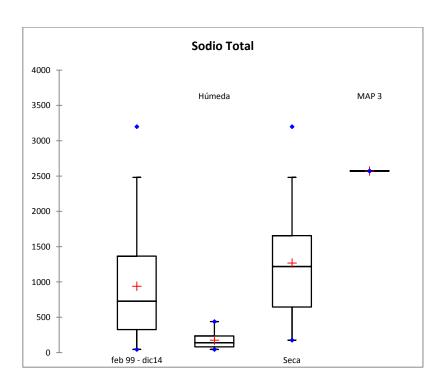

	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				
observaciones	56	19	37	1
Mínimo	0.2730	0.2730	0.5468	
Máximo	1.8110	1.3880	1.8110	
1st Quartil	0.7429	0.4999	1.0120	
Mediana	1.0310	0.6141	1.1770	1.2080
3rd Quartil	1.2734	0.7807	1.3470	
promedio	1.0156	0.6788	1.1885	


	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				
observaciones	56	19	37	1
Mínimo	0.0001	0.0001	0.0001	
Máximo	0.0005	1.0005	0.0001	
1st Quartil	0.0001	0.0001	0.0001	
Mediana	0.0001	0.0001	0.0001	0.0000
3rd Quartil	0.0001	0.0001	0.0001	
promedio	0.0001	0.0528	0.0001	


	feb 99 - dic			_
Estadística	14	Húmeda	Seca	MAP III
No. de				_
observaciones	56	19	37	1
Mínimo	0.0002	0.0002	0.0002	
Máximo	0.0546	0.0408	0.0546	
1st Quartil	0.0121	0.0100	0.0126	
Mediana	0.0210	0.0169	0.0228	0.0092
3rd Quartil	0.0269	0.0270	0.0269	
promedio	0.0206	0.0189	0.0214	


	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				
observaciones	56	19	37	1
Mínimo	0.0000	0.0000	0.0000	
Máximo	0.0002	0.0001	0.0002	
1st Quartil	0.0000	0.0000	0.0000	
Mediana	0.0000	0.0000	0.0000	0.0002
3rd Quartil	0.0000	0.0000	0.0000	
promedio	0.0000	0.0000	0.0000	


	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				
observaciones	56	19	37	1
Mínimo	0.0001	0.0001	0.0001	
Máximo	0.0272	0.0272	2.0021	
1st Quartil	0.0001	0.0032	0.0001	
Mediana	0.0009	0.0063	0.0001	0.0003
3rd Quartil	0.0047	0.0096	0.0018	
promedio	0.0032	0.0076	0.1090	


	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				
observaciones	56	19	37	1
Mínimo	2.5990	2.5990	12.5400	
Máximo	172.1000	36.7400	172.1000	
1st Quartil	21.3100	9.4115	37.7400	
Mediana	38.9600	11.9350	57.5000	158.7000
3rd Quartil	80.7700	21.0700	91.0200	
promedio	55.3118	15.3653	72.5859	


	feb 99 - dic			
Estadística	14	Húmeda	Seca	MAP III
No. de				
observaciones	56	19	37	1
Mínimo	0.0000	0.0000	0.0000	
Máximo	0.0200	1.0012	0.0200	
1st Quartil	0.0000	0.0000	0.0000	
Mediana	0.0000	0.0000	0.0000	0.0020
3rd Quartil	0.0001	0.0003	0.0001	
promedio	0.0008	0.0531	0.0010	

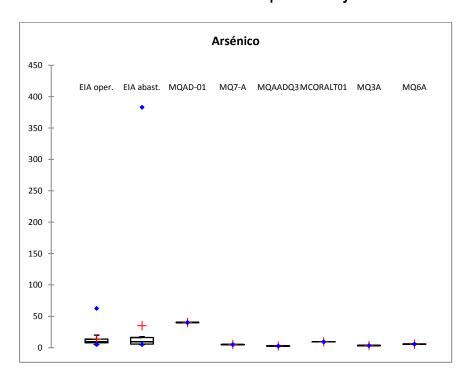
Estadística	feb 99 - dic 14	Húmeda	Seca	MAP III
No. de				_
observaciones	56	19	37	1
Mínimo	45.3300	45.3300	177.0000	
Máximo	3199.0000	439.9000	3199.0000	
1st Quartil	325.1000	81.7275	644.8000	
Mediana	728.9000	140.2500	1219.2500	2571.7100
3rd Quartil	1365.0000	235.7750	1657.0000	
promedio	939.1491	176.5094	1268.9392	

Estadística	feb 99 - dic 14	Húmeda	Seca	MAP III
No. de				
observaciones	56	19	37	1
Mínimo	0.0030	0.0030	0.0030	
Máximo	0.5480	0.4840	0.5480	
1st Quartil	0.0880	0.0990	0.0880	
Mediana	0.1835	0.1770	0.1870	0.0947
3rd Quartil	0.2573	0.2675	0.2540	
promedio	0.1896	0.2004	0.1841	

Tabla 19. Resultados de la comparación entre la línea base y los resultados obtenidos por el 3er Monitoreo ambiental Participativo: Calidad de Agua área de abastecimiento

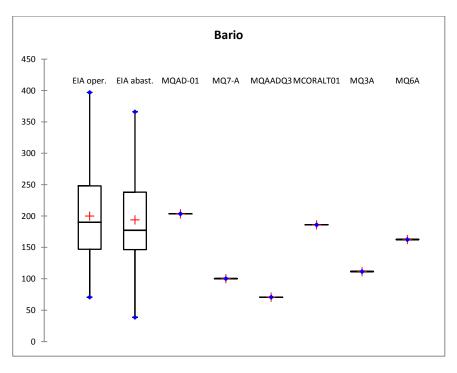
Estación	Periodo de	Monitoreos		Parámetros de	e calidad de agua	
de monitoreo	evaluación		monitoreados	Evaluados ECA Agua 3	Información Limitada (pocos datos)	Fuera de distribución esperada
TIT-1	Feb 99 – dic 14	56	43	38	2	2 (F y PO4)
CHL-8	Dic 96 – dic 14	60	43	38	1	0
PGB-1	Abr 07 – dic 14	54	43	38	0	2 (Cd, Mn)
VIZ-2	Ene 99 – dic 14	57	43	38	1	3 (SO4, Cd, Cl)

Para el punto de monitoreo TIT-1 la concentración de fluor y fosfatos determinados en el 3 MAP época seca se encuentran fuera de la distribución esperada para estos parámetros cuando son comparados con la información de monitoreos ambientales de la línea de base ambiental del Proyecto.

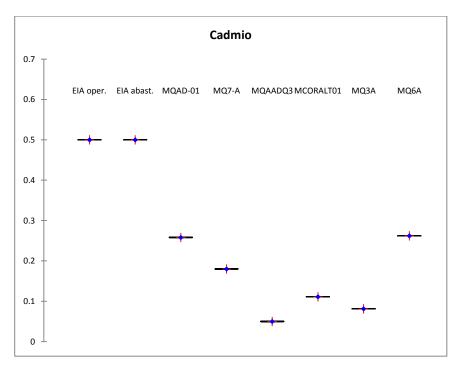

Para el punto de monitoreo PGB-1 la concentración de cadmio y manganeso determinados en el 3 MAP época seca se encuentran fuera de la distribución esperada para estos parámetros cuando son comparados con la información de monitoreos ambientales de la línea de base ambiental del Proyecto.

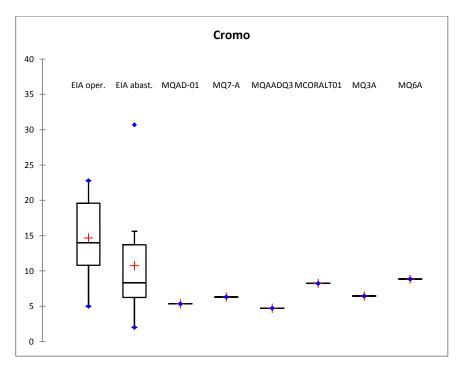
Para el punto de monitoreo VIZ-2 el contenido de sulfatos, cadmio y cloruros difieren de la distribución esperada para estos parámetros cuando son comparados con la información de monitoreos ambientales de la línea de base ambiental del proyecto.

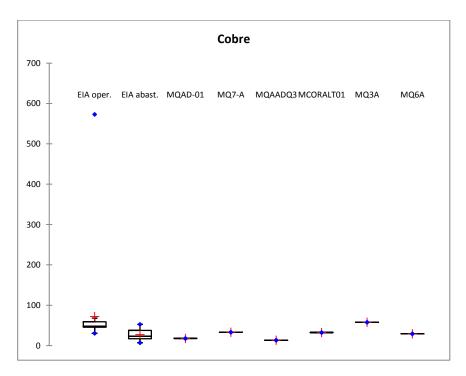
Como se observa en la tabla 15 más del 95.4 % de los resultados están dentro de lo esperado por los monitoreos ambientales correspondiente a la línea base ambiental. Se recomienda validar la línea de base ambiental de agua superficial en la zona de abastecimiento de agua del proyecto Quellaveco.

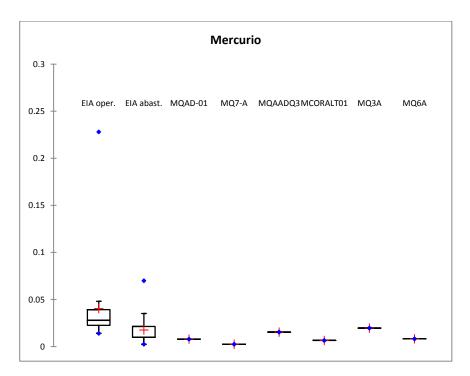


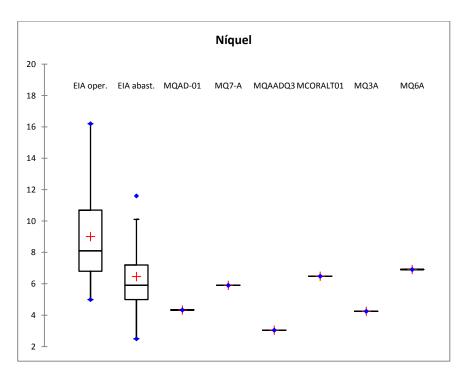
7.5.2. Calidad del suelo en el área de operaciones y abastecimiento

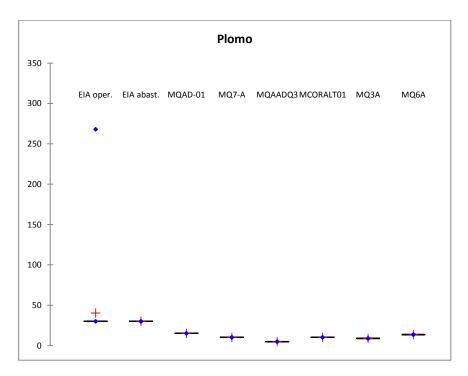

Estadístico	EIA oper.	EIA abast.	MQAD-01	MQ7-A	MQAADQ3	MCORALT01	MQ3A	MQ6A
Mínimo	5.000	5.000						
Máximo	62.600	383.000						
1° Cuartil	7.900	5.750						
Mediana	9.700	9.500						
3° Cuartil	13.700	16.150						
Media	13.934	35.058	40.140	4.980	2.640	9.440	3.480	5.820

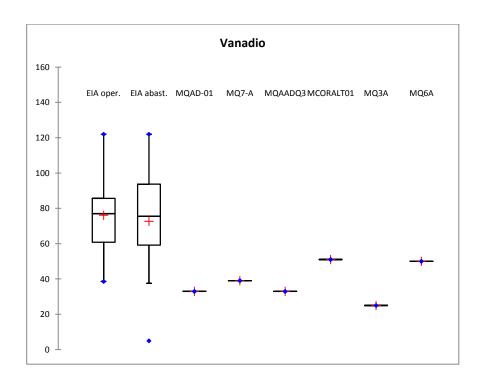

Estadístico	EIA oper.	EIA abast.	MQAD-01	MQ7-A	MQAADQ3	MCORALT01	MQ3A	MQ6A
Mínimo	70.800	38.600						
Máximo	397.000	366.000						
1° Cuartil	147.000	146.500						
Mediana	190.000	177.000						
3° Cuartil	248.000	238.000						
Media	199.962	193.821	203.680	100.410	70.910	185.990	111.630	162.610

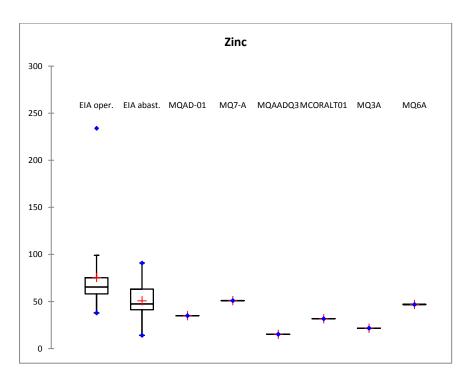

Estadístico	EIA oper.	EIA abast.	MQAD-01	MQ7-A	MQAADQ3	MCORALT01	MQ3A	MQ6A
Mínimo	0.500	0.500						_
Máximo	0.500	0.500						
1° Cuartil	0.500	0.500						
Mediana	0.500	0.500						
3° Cuartil	0.500	0.500						
Media	0.500	0.500	0.258	0.180	0.050	0.111	0.081	0.262


Estadístico	EIA oper.	EIA abast.	MQAD-01	MQ7-A	MQAADQ3	MCORALT01	MQ3A	MQ6A
Mínimo	5.000	2.000						
Máximo	22.800	30.700						
1° Cuartil	10.800	6.250						
Mediana	14.000	8.300						
3° Cuartil	19.600	13.700						
Media	14.683	10.758	5.340	6.310	4.740	8.250	6.450	8.860


Estadístico	EIA oper.	EIA abast.	MQAD-01	MQ7-A	MQAADQ3	MCORALT01	MQ3A	MQ6A
Mínimo	30.300	7.000						
Máximo	573.000	52.500						
1° Cuartil	45.500	16.800						
Mediana	47.800	22.700						
3° Cuartil	59.100	37.350						
Media	72.190	27.158	17.870	33.180	13.310	32.570	57.880	29.220


Estadístico	EIA oper.	EIA abast.	MQAD-01	MQ7-A	MQAADQ3	MCORALT01	MQ3A	MQ6A
Mínimo	0.014	0.003						
Máximo	0.228	0.070						
1° Cuartil	0.023	0.010						
Mediana	0.028	0.010						
3° Cuartil	0.039	0.021						
Media	0.040	0.018	0.008	0.003	0.015	0.007	0.020	0.008


Estadístico	EIA oper.	EIA abast.	MQAD-01	MQ7-A	MQAADQ3	MCORALT01	MQ3A	MQ6A
Mínimo	5.000	2.500						
Máximo	16.200	11.600						
1° Cuartil	6.800	5.000						
Mediana	8.100	5.900						
3° Cuartil	10.700	7.200						
Media	9.010	6.463	4.330	5.900	3.050	6.480	4.250	6.910

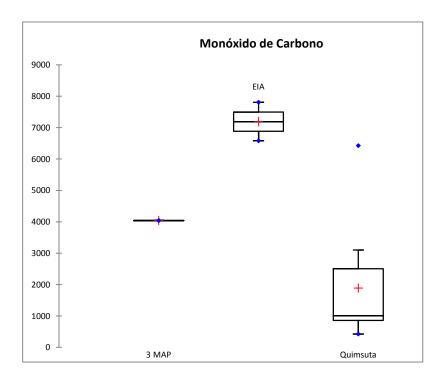

Estadístico	EIA oper.	EIA abast.	MQAD-01	MQ7-A	MQAADQ3	MCORALT01	MQ3A	MQ6A
Mínimo	30.000	30.000						
Máximo	268.000	30.000						
1° Cuartil	30.000	30.000						
Mediana	30.000	30.000						
3° Cuartil	30.000	30.000						
Media	40.310	30.000	15.140	10.260	4.890	10.240	8.790	13.710

Estadístico	EIA oper.	EIA abast.	MQAD-01	MQ7-A	MQAADQ	3 MCORALT01	MQ3A	MQ6A
Mínimo	38.600	5.000						
Máximo	122.000	122.000						
1° Cuartil	60.800	59.200						
Mediana	77.000	75.600						
3° Cuartil	85.600	93.750						
Media	76.138	72.711	33.000	39.000	33.000	51.000	25.000	50.000

Estadístico	EIA oper.	EIA abast.	MQAD-01	MQ7-A	MQAADQ3	MCORALT01	MQ3A	MQ6A
Mínimo	37.800	14.000						
Máximo	234.000	90.900						
1° Cuartil	58.000	41.300						
Mediana	65.400	47.300						
3° Cuartil	75.300	63.250						
Media	75.607	50.795	34.980	50.930	15.320	31.700	21.630	46.880

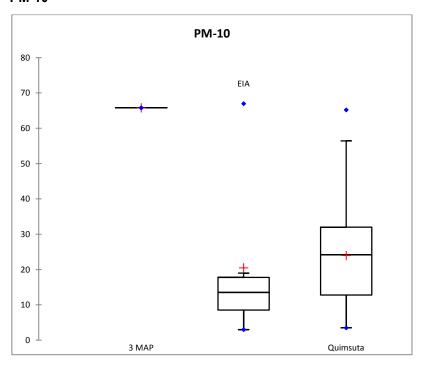
Tabla 20. Resultados de la comparación entre la línea base y los resultados obtenidos por el 3er Monitoreo ambiental Participativo: Calidad de Suelo área de abastecimiento y operaciones

Estación de	Puntos	Parámetros de calidad de Suelo				
monitoreo		monitoreados	Evaluados ECA Suelo	Adicionales	Distribución esperada	
MQ7-A	29	29	5	5	10	
MQAADQ3	29	29	5	5	10	
MCORALT01*	29	29	5	5	10	
MQ3A	29	29	5	5	10	
MQ6A	29	29	5	5	10	

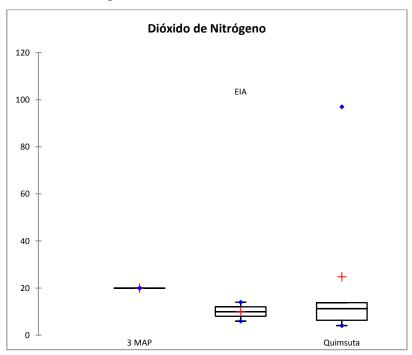

Como se observa en la tabla 16, el 100% de los resultados obtenidos en los puntos de monitoreo para los parámetros de calidad de suelo, se encuentran dentro de lo esperado para el área de operaciones y abastecimiento. Se recomienda validar la línea de base ambiental de calidad de suelo. Se realizó una comparación espacial en el área de abastecimiento.

7.5.3. Calidad del aire

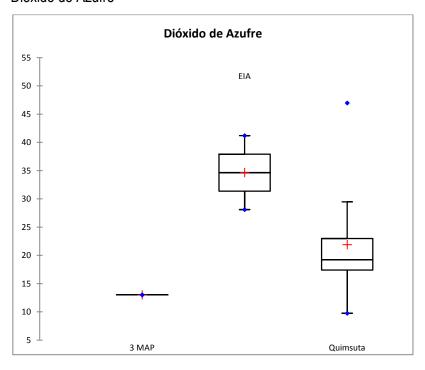
Se comparó los resultados de los parámetros de calidad de aire de las estaciones de monitoreo medidos en diciembre del 2014 con la data disponible del EIA y estaciones de calidad de aire de zonas cercanas de forma referencial. Se presenta como ejemplo de diagramas los resultados de la estación KPA2, los diagramas de los puntos KPA3, KPA4, y KPA5 se encuentran en el anexo 4, en el caso de la estación KPA7 se recomienda mayores monitoreos para poder tener la tendencia.


Monóxido de Carbono

Estadísticas	3 MAP	EIA	Quimsuta
No. de observaciones	1	2	13
Mínimo		6579.0	425.0
Máximo		7805.0	6426.0
1er Quartil		6885.5	856.0
Mediana	4037	7192.0	1009.0
3er Quartil		7498.5	2505.0
Promedio		7192.0	1887.9


PM-10

Estadísticas				
Estadisticas	3 MAP	EIA		Quimsuta
No. de observaciones	1		6	39
Mínimo			3.0	3.5
Máximo			67.0	65.2
1er Quartil			8.5	12.75
Mediana	65.8		13.5	24.2
3er Quartil			17.75	32.0
Promedio			20.5	23.97


Dióxido de Nitrógeno

Estadísticas	3 MAP	EIA	Quimsuta
No. de observaciones	1	2	13
Mínimo		6.0	4.0
Máximo		14.0	96.9
1er Quartil		8.0	6.28
Mediana	20	10.0	11.24
3er Quartil		12.0	13.76
Promedio		10.0	24.83

Dióxido de Azufre

Estadísticas	3 MAP	EIA	Quimsuta
No. de			
observaciones	1	2	13
Mínimo		28.1	9.76
Máximo		41.2	46.99
1er Quartil		31.38	17.39
Mediana	13.0	34.65	19.25
3er Quartil		37.93	22.97
Promedio		34.65	21.89

Tabla 21. Resultados de la comparación entre la línea base y los resultados obtenidos por el 3er Monitoreo ambiental Participativo: Calidad de Aire

		Monitoreos del EIA	área	Número de del ECA Aire		metros
Estación de Monitoreo	Periodo de Evaluación		Monitoreos del cercana	Monitoreados	Evaluados	tuera de la distribución esperada
KPA2	2007-2014	2	13	4	4	0
KPA3	2007-2014	2	13	4	4	0
KPA4	2007-2014	2	13	4	4	1
KPA5	2007-2014	2	13	4	4	1

Como se observa de la tabla 17 el 88 % de los resultados están dentro de lo esperado, se tiene dos parámetros que se desvían el monóxido de carbono en KPA5 y el dióxido de nitrógeno en el KPA4, estos requieren mayor seguimiento en los monitoreos sucesivos.

Se recomienda que se dé por validada la línea de base ambiental de calidad de aire del proyecto Quellaveco.

7.5.4. Hidrobiología

Para este componente se validó la información del monitoreo hidrobiológico y se compararon los resultados de los monitoreos hidrobiológicos en la época seca de los años 2010 y 2014.

COMPARACIÓN DE LOS INDICES ECOLÓGICOS DE LA COMUNIDAD BIOLÓGICA DE LOS ORGANISMOS CELULARES (FITOPLANCTON Y PERIFITON)

Tabla 22: Riqueza específica de los organismos celulares comparados en los monitoreos hidrobiológicos desarrollados en setiembre-2010 y diciembre-2014.

ESTACIÓN	Época seca 2010	Época seca 2014
QLHUA-01	25	30
QLASA-02	58	37
QLASA-03	43	50
QLTUM-01	33	56
Promedio	40	43

Al comparar los resultados de los años 2010 y 2014 de las estaciones comparadas se observa una alta similaridad en el número de especies, observándose ligeramente una mayor cantidad de especies en promedio en el monitoreo de 2014.

Tabla 23: Uniformidad o equitatividad de los organismos celulares comparados en los monitoreos hidrobiológicos desarrollados en setiembre-2010 y diciembre-2014.

ESTACIÓN	Época seca 2010	Época seca 2014
QLHUA-01	0,684	0,77
QLASA-02	0,753	0,66
QLASA-03	0,823	0,795
QLTUM-01	0,669	0,785
Promedio	0,684	0,754

Los índices de uniformidad o equitatividad nos indican la distribución de los organismos en una comunidad biológica y estos valores fluctúan entre 0 y 1, valores cercanos a 1 son valores ideales de comunidades con buena uniformidad o equitatividad. Se observa que en el monitoreo de 2014 se encontró en promedio valores ligeramente más altos de uniformidad.

Tabla 24: Índices de biodiversidad de los organismos celulares comparados en los monitoreos hidrobiológicos desarrollados en setiembre-2010 y diciembre-2014.

ESTACIÓN	Época seca 2010	Época seca 2014
QLHUA-01	3,177	2,125
QLASA-02	4,413	2,01
QLASA-03	4,468	3,11
QLTUM-01	3,374	2,525
Promedio	3,86	2,44

Los valores de los índices de Shannon – Wienner o de diversidad nos muestran el número de especies y la cantidad de estas especies, observando los resultados podemos observar que los índices de biodiversidad son mayores en el monitoreo 2010 y que está en este caso más influenciado por la cantidad de organismos.

COMPARACIÓN DE LOS MACROINVERTEBRADOS BENTÓNICOS

Tabla 25: Riqueza específica de los macroinvertebrados bentónicos comparado en los monitoreos hidrobiológicos desarrollados en setiembre-2010 y diciembre-2014.

ESTACIÓN	Época seca 2010	Época seca 2014
QLHUA-01	04	09
QLASA-02	26	10
QLASA-03	18	19
QLTUM-01	18	10
Promedio	17	12

Al comparar los resultados de los años 2010 y 2014 de las estaciones comparadas se observa una mayor cantidad de especies en promedio en el monitoreo de 2010.

Tabla 26: Abundancia de los macroinvertebrados bentónicos comparado en los monitoreos hidrobiológicos desarrollados en setiembre-2010 y diciembre-2014.

ESTACIÓN	Época seca 2010	Época seca 2014
QLHUA-01	518	141
QLASA-02	1285	148
QLASA-03	993	465
QLTUM-01	1869	234

Al comparar los resultados de los años 2010 y 2014 de las estaciones comparadas se observa una mayor cantidad de organismos en promedio en el monitoreo de 2010.

Tabla 27: Uniformidad o equitatividad de los macroinvertebrados bentónicos comparado en los monitoreos hidrobiológicos desarrollados en setiembre-2010 y diciembre-2014.

ESTACIÓN	Época seca 2010	Época seca 2014
QLHUA-01	0,551	0,86
QLASA-02	0,807	0,82
QLASA-03	0,605	0,89
QLTUM-01	0,529	0,91
Promedio	0,62	0,86

Los índices de uniformidad o equitatividad nos indican la distribución de los organismos en una comunidad biológica y estos valores fluctúan entre 0 y 1, valores cercanos a 1 son valores ideales de comunidades con buena uniformidad o equitatividad. Se observa que en el monitoreo de 2014 se encontró en promedio valores más altos de uniformidad.

Pronaturaleza

Tabla 28: Índices de biodiversidad de los macroinvertebrados bentónicos comparado en los Pronaturaleza monitoreos hidrobiológicos desarrollados en setiembre-2010 y diciembre-2014.

ESTACIÓN	Época seca 2010	Época seca 2014
QLHUA-01	1,101	1,89
QLASA-02	3,793	2,02
QLASA-03	2,523	2,44
QLTUM-01	2,208	2,17
Promedio	2,41	2,13

Los valores de los índices de Shannon – Wienner o de diversidad nos muestran el número de especies y la cantidad de estas especies, observando los resultados podemos observar que ligeramente los índices de biodiversidad son mayores en el monitoreo 2010.

Tabla 29: Comparación de la variables fisicoquímicas del monitoreo ambiental participativo de la tercera campaña en Moquegua desarrollado en diciembre de 2014

Setiembre, 2010

PARÁMETROS	QL-HUA-01	QL-ASA-02	QL-TUM-01
Temperatura (°C)	14,77	10,8	22,11
Oxigeno (mg/l)	2.8	4.2	5.33
рН	7.03	7.29	7.99
Conductividad (µS/cm)	98.63	142.1	334.5

Diciembre, 2014

PARÁMETROS	QL-HUA-01	QL-ASA-02	QL-TUM-01
Temperatura (°C)	15,8	7,1	15,7
Oxigeno (mg/l)	5,4	7,53	7,53
рН	8,48	7,69	7,69
Conductividad (µS/cm)	90,6	204	204

A pesar de comparar resultados de diferentes meses se observa en diciembre, 2014 una mayor concentración de oxígeno disuelto, parámetro muy importante para la vida acuática. El pH se incrementó ligeramente pero dentro de lo esperado para estos ambientes acuáticos.

8. CONCLUSIONES

- ✓ La calidad de agua superficial en el área de abastecimiento, en la cuenca del río Titire se observa una fuerte influencia de aguas mineralizadas de origen termal que incrementan la concentración de los aniones bicarbonatos, fluoruros, cloruros y los cationes sodio, litio, calcio, boro, hierro, manganeso y arsénico, por lo tanto también se incrementa la conductividad eléctrica.
- ✓ La calidad de agua superficial en el área de abastecimiento, en la cuenca del río Chilota se observa una influencia de aguas termales y calidad de suelo caracterizado por la presencia de carbonatos que incrementan el pH y presencia de arsénico.
- ✓ La calidad de agua superficial en el área de abastecimiento, en la cuenca del río Calasaya, no tiene mayor presencia de iones que superen lo establecido por el ECA Agua.
- ✓ La calidad de agua superficial en el área de abastecimiento, en la cuenca del río Vizcachas, se observa la presencia de iones ácidos como el aluminio, hierro asociados al manganeso que bajan el valor del pH.
- ✓ Los parámetros de calidad de agua en el área de abastecimiento que superan los ECAs (tabla 11), están dentro de la distribución esperada por la línea de base ambiental del Proyecto Quellaveco.
- ✓ La calidad del suelo del área de operaciones y abastecimiento se caracteriza por presencia de metales por debajo de lo establecido en el ECA y dentro de lo esperado por la línea de base ambiental.
- ✓ La calidad del aire se observa la influencia de zonas urbanas en zonas cercanas a KPA4 (Poblado de Tala) y KPA7 (San Antonio) en la concentración del material particulado menor a 2.5 um.
- ✓ La comparación de los datos obtenidos en el MAP III época seca de calidad de agua comparados con la línea de base ambiental del proyecto Quellaveco donde se incluye la información del EIA, presenta más del 96 % de datos dentro de lo esperado por lo que se recomienda la validación de la línea de base ambiental de calidad de agua superficial área de abastecimiento.
- ✓ La comparación de los datos obtenidos en el MAP III época seca de calidad de suelo comparados con la línea de base ambiental del proyecto Quellaveco donde se incluye la información del EIA, presenta el 100 % de los datos dentro de lo esperado por lo que se recomienda la validación de la línea de base ambiental de calidad de suelo en el área de operaciones.
- ✓ La comparación de los datos obtenidos en el MAP III época seca de calidad de aire comparados con la línea de base ambiental del proyecto Quellaveco donde se incluye la información del EIA y comparación de estaciones cercanas a los puntos de monitoreo, presenta el 88 % de los datos dentro de lo esperado por lo que se recomienda la validación de la línea de base ambiental de calidad de aire en el área de operaciones.

✓ La comparación de los datos obtenidos en el MAP III de hidrobiología, en promedio, presentan valores muy similares (En organismos celulares en general similitudes para riqueza específica de 92.5%, para Uniformidad de 89.27% e índices de diversidad de 41.81% y en macroinvertebrados bentónicos para riqueza específica de 59.44%, uniformidad de 67.25% e indices de diversidad de 86.86%) a los encontrados en el monitoreo 2010 (información del EIA) y que son valores medios de riqueza específica, abundancia, equitatividad e índice de diversidad relacionada con la época seca.

9. RECOMENDACIONES

✓ Se recomienda al Comité de Monitoreo, Seguimiento y Verificación de los acuerdos de la Mesa de Dialogo con Anglo American Quellaveco continuar con las campañas de monitoreo, realizar estudios de la influencia de aguas termales y calidad de suelo en la cuenca del Titire y Chilota.

10. REFERENCIAS BIBLIOGRÁFICAS

- Anglo American Quellaveco S.A. Proyecto Quellaveco. Estudio de Impacto Ambiental diciembre del 2000.
- Anglo American Quellaveco S.A. Proyecto Quellaveco. Modificación del Estudio de Impacto Ambiental, Informe Final setiembre del 2008
- Anglo American Quellaveco, Informe de calidad y cantidad de Agua Superficial y aire (1999-2014)
- Karr, J.R. and E.W. Chu. 1997. Biological monitoring and assessment: using multimetric indexes effectively. EPA 235-R97-001. University of Washington, Seattle. 149 pp.
- PRONATURALEZA, Informe de Resultados de Primera Campaña de Monitoreo de Agua Superficial y Subterránea Diciembre 2013 – Validación de Línea de Base Ambiental (Agua superficial).
- TAYLOR, S. R. (1964): Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta, 28: 1273-1285.